hello大家好,今天小编来为大家解答以下的问题,初三数学圆的垂径定理,垂径定理课件,很多人还不知道,现在让我们一起来看看吧!

初三数学圆的垂径定理,垂径定理课件

初三数学圆的垂径定理,垂径定理课件

「垂径定理」是初中数学的重要概念之一,它能够帮助我们理解圆的性质,进而解决与圆相关的问题。本文将主要介绍垂径定理的基本概念以及应用,并提供一份垂径定理的课件,以便更好地理解和掌握这一知识点。

垂径定理是指:在一个圆上,从圆心到圆上任意一点的线段与与此线段垂直的另外一个线段的乘积相等。换句话说,垂径定理告诉我们圆心到圆上任意一点的线段与其垂直线段的乘积是一个常数。这个常数就是圆的半径。

让我们来了解垂径定理的基本原理。设圆的圆心为O,半径为r,P是圆上任意一点,垂径为PH。根据垂径定理,OP × PH = r × r。这个等式告诉我们,不论P点在圆的何处,都有相同的乘积。这也就意味着,圆的半径决定了垂直线段与圆心到圆上任意一点的线段的乘积。

垂径定理在解决与圆相关的问题时非常有用。我们可以利用垂径定理证明两个弦相交时,交点到两个弦的距离相等;或者利用垂径定理证明同弧所对的圆心角相等等。

为了更好地理解和掌握垂径定理,我为大家准备了一份课件。课件中通过图形和文字的结合,详细介绍了垂径定理的定义、原理以及应用。课件以清晰的图形展示了垂径定理的基本概念,然后逐步讲解了定理的证明过程。课件列举了一些实际问题,并通过具体的例子展示了如何应用垂径定理解决这些问题。课件提供了一些练习题,供学生们巩固所学知识。

通过学习和掌握垂径定理,我们不仅能够深入理解圆的性质,还能够应用这一定理解决与圆相关的问题。通过这份垂径定理的课件,我们能够更加直观地理解定理的概念和原理,并通过练习题进行实践和巩固。相信通过这样的学习方式,我们能够更好地掌握垂径定理这一数学知识点,提升自己的数学能力。

初三数学圆的垂径定理,垂径定理课件

垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:

在5个条件中:1.平分弦所对的一条弧2.平分弦所对的另一条弧3.平分弦4.垂直于弦5.经过圆心(或者说直径)

只要具备任意两个条件,就可以推出其他的三个结论

初三数学圆的经典例题

对于已经步入初三的同学们,掌握好有关于圆的知识内容,对于后面接触弧、扇形、椭圆等相关知识内容都有一定的帮助,一起来看看小编帮大家整理的有关于初中数学圆知识点的内容有哪些吧。

初三数学圆的知识点总结归纳

圆的定义:

(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:

(1)如定义(1)中,该定点为圆心

(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示

直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

周长计算公式

1.、已知直径:C=πd

2、已知半径:C=2πr

3、已知周长:D=c\π

4、圆周长的一半:1\2周长(曲线)

5、半圆的长:1\2周长+直径

面积计算公式:

1、已知半径:S=πr平方

2、已知直径:S=π(d\2)平方

3、已知周长:S=π(c\2π)平方

点、直线、圆和圆的位置关系

1、点和圆的位置关系

①点在圆内点到圆心的距离小于半径

②点在圆上点到圆心的距离等于半径

③点在圆外点到圆心的距离大于半径

2.过三点的圆不在同一直线上的三个点确定一个圆。

3.外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。

4.直线和圆的位置关系

相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。

相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。

相离:直线和圆没有公共点叫这条直线和圆相离。

5.直线和圆位置关系的性质和判定

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

①直线l和⊙O相交d

②直线l和⊙O相切d=r;

③直线l和⊙O相离d>r。

圆和圆定义:

两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

两个圆有两个交点,叫做两个圆的相交。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

原理:圆心距和半径的数量关系:

两圆外离d>R+r两圆外切d=R+r两圆相交R-rr)两圆内含dr)

正多边形和圆

1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

2、正多边形与圆的关系:

(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

(2)这个圆是这个正多边形的外接圆。

3、正多边形的有关概念:

(1)正多边形的中心——正多边形的外接圆的圆心。

(2)正多边形的半径——正多边形的外接圆的半径。

(3)正多边形的边心距——正多边形中心到正多边形各边的距离。

(4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。

4、正多边形性质:

(1)任何正多边形都有一个外接圆。

(2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。

练习题

1、已知:弦AB把圆周分成1:5的两部分,这弦AB所对应的圆心角的度数为________。

2、已知:⊙O中的半径为4cm,弦AB所对的劣弧为圆的1/3,则弦AB的长为_______cm, AB的弦心距为_____cm。

3、如图,在⊙O中,AB∥CD,⌒AC的度数为450,则∠COD的度数为_______。

4、如图,在三角形ABC中,∠A=70°,⊙O截△ABC的三边所得的弦长相等,则 ∠BOC=( )。

A.140° B.135° C.130° D.125°5、下列语句中,正确的有( )

(1)相等的圆心角所对的弧相等;

(2)平分弦的直径垂直于弦;

(3)长度相等的两条弧是等弧;

(4) 圆是轴对称图形,任何一条直径都是对称轴

A.0个 B.1个 C.2个 D.3个

6、已知:在直径是10的⊙O中,⌒AB的度数是60°,求弦AB的弦心距。

7、已知:如图,⊙O中,AB是直径,CO⊥AB,D是CO的中点,DE∥AB, 求证:⌒AB=2⌒AE

测试题

初三数学圆的公式大全

1.

圆的面积公式

S=πr

圆的周长公式C=2π

r

3短半径3.84,

长半径12.5怎么做

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半求教:三角形、长方形、正方形、梯形、圆等的周长计算公式和面积计算公式?

1、三角形(一般三角形,海伦公式)

周长L

=

a

+

b

+

c(a,b,c为三角形的三个边的长,下同)

面积S

=

√[p(p

-

a)(p

-

b)(p

-

c)],p

=

(1/2)(a

+

b

+

c)

2、长方形

周长L

=

2(a

+

b)(a,b为长方形相邻边的长,下同)

面积S

=

ab

3、正方形

周长L

=

4a

面积S

=

a^2

4、梯形

周长L

=

a

+

b

+

c

+

d(a:上底,b:下底,c,d两个腰的长,下同)

面积S

=

(1/2)(a

+

b)h(h:梯形的高)

5、圆

周长L

=

2πr(π:圆周率,r:圆的半径,下同)

面积S

=

πr^2

4

逐步行岛

[新手]

平面图形

周长C和面积S

正方形

a—边长

C=4a

S=a2

长方形

a和b-边长

C=2(a+b)

S=ab

三角形

a,b,c-三边长

h-a边上的高

s-周长的一半

A,B,C-内角

其中s=(a+b+c)/2

S=ah/2

=ab/2·sinC

=[s(s-a)(s-b)(s-c)]1/2

=a2sinBsinC/(2sinA)

四边形

d,D-对角线长

α-对角线夹角

S=dD/2·sinα

平行四边形

a,b-边长

h-a边的高

α-两边夹角

S=ah

=absinα

菱形

a-边长

α-夹角

D-长对角线长

d-短对角线长

S=Dd/2

=a2sinα

梯形

a和b-上、下底长

h-高

m-中位线长

S=(a+b)h/2

=mh

r-半径

d-直径

C=πd=2πr

S=πr2

=πd2/4

扇形

r—扇形半径

a—圆心角度数

C=2r+2πr×(a/360)

S=πr2×(a/360)

弓形

l-弧长

b-弦长

h-矢高

r-半径

α-圆心角的度数

S=r2/2·(πα/180-sinα)

=r2arccos[(r-h)/r]

-

(r-h)(2rh-h2)1/2

=παr2/360

-

b/2·[r2-(b/2)2]1/2

=r(l-b)/2

+

bh/2

≈2bh/3

圆环

R-外圆半径

r-内圆半径

D-外圆直径

d-内圆直径

S=π(R2-r2)

=π(D2-d2)/4

椭圆

D-长轴

d-短轴

S=πDd/4

圆的性质定理九年级

如下:

1、切线定理:垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。

2、切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

4、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

5、弦切角定理:弦切角等于对应的圆周角。与圆相关的公式:

1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。

2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。

3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。

4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。

5、扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)。

6、扇形面积S=nπ R/360=LR/2(L为扇形的弧长)。

7、圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。

垂径定理课件

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

END,关于“初三数学圆的垂径定理,垂径定理课件”的具体内容就介绍到这里了,如果可以帮助到大家,还望关注本站哦!