hello大家好,我是本站的小编子芊,今天来给大家介绍一下关于高中数学计算的简便方法,高中数学计算训练题的相关知识,希望能解决您的疑问,我们的知识点较多,篇幅较长,还希望您耐心阅读,如果有讲得不对的地方,您也可以向我们反馈,我们及时修正,如果能帮助到您,也请你收藏本站,谢谢您的支持!

关于高中数学计算的简便方法,高中数学计算训练题

关于高中数学计算的简便方法,高中数学计算训练题

数学作为一门基础学科,在中学阶段占据了非常重要的位置。在高中数学学习中,计算是不可或缺的一环,而掌握一些简便的计算方法对于提高计算速度和准确性是非常有帮助的。以下是一些关于高中数学计算的简便方法以及一些训练题供大家参考。

对于乘法计算,我们可以利用分解因式的方法简化计算过程。计算26×5,我们可以将5分解为5×2,然后将26乘以2,得到52;再将52乘以5即可得到最终结果260。这种方法可以减少中间计算的数量,提高计算速度。

对于除法计算,除了直接计算外,我们还可以利用近似数的方法。计算67除以8,我们可以先将67近似为70,然后将70除以8得到8余6。这种方法不仅可以减少计算步骤,还能更好地估算出结果的范围。

对于加减法计算,我们可以利用合并同类项的方法简化计算过程。计算3+5+7+9+11,我们可以将其中的奇数和偶数分别相加,得到20+16=36。我们可以通过合并同类项的方式减少计算的复杂度。

除了上述简便方法,还有一些计算技巧可以帮助提高计算速度和准确性。将小数除法转化为整数除法,计算后再转为小数;利用乘法表背诵法提高乘法计算速度等等。这些技巧需要大家在实践中不断积累和运用。

在掌握了这些简便的计算方法后,我们可以通过一些训练题来进一步巩固和提高自己的计算水平。计算(1+2+3+...+100)×4;计算7的平方加8的平方再开平方根;计算81的立方根,等等。这些训练题既考察了我们的计算能力,又培养了我们的逻辑思维能力。

掌握一些简便的计算方法对于高中数学学习是非常重要的。通过不断地运用和练习,我们可以提高自己的计算速度和准确性,更好地应对高中数学中的各类计算题目。希望大家能够将这些方法和训练题融入到自己的学习中,取得更好的成绩。

关于高中数学计算的简便方法,高中数学计算训练题

弦AB的中点到准线的距离=(A点到准线的距离+B点到准线的距离)/2=(AF+BF)/2=AB/2

接下来 应该会了吧 就是联立 利用向量的关系 求解即可

设直线 y=k(x-1)

A(x1,y1) B(x2,y2)

(x1-1)/(1-x2)=3 解k

AB用弦长公式

高中数学方法

高中数学思想方法有7种,内容如下:

1、函数与方程的思想

函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

函数和方程、不等式是通过函数值等于零、大于零或小于零而相互关联的,它们之间既有区别又有联系。函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。2、数形结合的思想

数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。“数”与“形”两者之间并不是孤立的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的研究策略,即是数形结合的思想。

3、分类与整合的思想高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题需要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。

特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q≠1两种情况,对数函数的单调性就分为a>1,0

4、化归与转化的思想

将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化思想的实质是揭示联系,实现转化。转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

5、特殊与一般的思想

由特殊到一般,由一般到特殊,是人们认识世界的基本方法之一。数学研究也不例外,由特殊到一般,由一般到特殊的研究数学问题的基本认识过程,就是数学研究中的特殊与一般的思想。

6、有限与无限的思想

函数是对运动变化的动态事物的描述,体现了变量数学在研究客观事物中的重要作用。导数是对事物变化快慢的一种描述,并由此可进一步处理和解决函数的增减、极大、极小、最大、最小等实际问题,是研究客观事物变化率和最优化问题的有力工具。

7、或然与必然的思想

随机现象有两个最基本的特征,一是结果的随机性,即重复同样的试验,所得到的结果并不相同,以至于在试验之前不能预料试验的结果;二是频率的稳定性,即在大量重复试验中,每个试验结果发生的频率“稳定”在一个常数附近。

高中数学计算训练题

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

高中如何提高数学的运算能力

运算能力是一项基本能力,它与逻辑思维能力、空间想象能力以及分析问题解决问题的能力互为依托,互为因果。运算能力的高低,是衡量一个学生的素质和潜质的重要标志之一,在考场上,更是决定成败的最重要因素。 高中如何提高数学的运算能力 1.杜绝心算、口算,一切落实在纸面 我们观察发现,很多计算能力差的孩子在课上甚至考场做计算题时喜欢心算、口算,甚至有些学生会直接观望、等待别人的计算结果,这是大忌。正确的做法应该是学生把草稿纸充分利用起来,将计算过程落实到纸面,严格书写、严禁推到,特别是目前计算经常出错的同学可以下次计算时像小学生、初中生一样认真在草稿纸上写出每一步化简、计算过程,严禁跨步和想当然。 2.理解并熟练运用计算次第,提高运算效率 我们这里说的运算次第就是指运算过程应遵循的原则和顺序,我们小学阶段曾经学过的四则远算法则其实就是最初级的运算次第,而高中阶段我们应该重点关注的运算次第主要有以下三个方面: 第一,化简和计算的先后。一定要记住先化简、后计算,这可以大大简化计算流程、提高计算的准确率,高中计算中的化简主要是合并同类项、提公因式及灵活运用初中阶段学过的各种正式运算公式(平方差公式、立方差公式、立方和公式、完全平方式)等。 有些同学在计算的过程中不懂化简或懒于化简,造成计算的式子非常冗长,甚至有些学生感觉都写不下去,这一定会造成计算出问题。 第二,通分和分离常数的取舍。一些同学只记住遇到分式要通分或分离常数,但很多人却不知道到底是要通分还是分离常数,今天笔者告诉大家其实很简单:遇和式优先考虑通分,遇减式则优先考虑分离常数。 第三,高阶和低阶的转化。所谓高阶就是计算次数高、带有分母或计算式子很长,所谓低阶就是次数低、整式或式子简短,如果我们能在运算过程中注意高阶和低阶的转化,将会起到化繁为简的神奇功效,极大提高计算速度与正确率。 3.学会自查、自检,提高正确率 高中学生在做完计算题后一定要学会自查、自检,虽然可能手头没有答案去对照,但完全可以采用特殊值或代入法检查自己的答案有误问题,一旦发现自己计算结果有误,就仔细检查自己的运算过程,力争找出漏洞并修正,这样做会极大提高学生的计算正确率。 高中如何提升计算能力 做好专项训练 每一道题,做错了都有做错的原因:公式使用不熟练,忽视了函数的值域,去绝对值忽视正负符号,三角函数变形生疏…..将错误的题目分类整理好,再进行专项训练,每种错误类型,连续找十道类似的题型进行训练,基本上可以克服,比起盲目的刷题,效率天差地别。 大家都在高中花费了三年时间,基础知识到最后时刻,基本上都能掌握,数学思维已经成型,这个时候决定你生死的就是计算能力。

高中数学计算能力差怎么办

数学计算能力差解决办法:

1、多做题,在做题的时候保持一个重要的思想:四则运算坚决不能错,变量带来带去要多加小心,多加注意。

2、你需要提高的就是多提的正确率,长期坚持练习会受到很好的效果的。

3、做题的时候一定不能焦躁,浮躁,要心平气和,静下心来认真做,仔细做,尽量保证会的都不错。

4、计算好的孩子。可能会有其中一部分是天生悟性比较好,但是绝大多数孩子是要通过大量的,艰辛的,枯燥的,基础的训练。计算是不可能一抓就好,一蹴而就的。它是一个漫长的。繁琐的,枯燥的过程。数学计算能力差归纳总结很重要

万变不离其宗,数学的归纳总结显得太有必要。告诉你一个现象:顶尖优秀的学生有个共同点,就是他们在一道题花上5分钟,会在脑海刻画这类题目的解答思路,并且会拿出10-15分钟来做归纳来写解题笔记。

所谓的归纳其实就是发散解题联想,就是书写解题笔记,久而久之,就是习惯性总结“条件反射”。细节决定成败,解题后检验答案显得尤为重要,养成草稿纸运算也同样重要。

此外要提高对关键词汇的敏感度,培养通过关键词汇,迅速建立起条件反射,借用刷题经验沉淀迅速找到解题突破口,这就是所谓的解题联想。这是一个量变到质变的过程,也是数学高手的必修课。

关于高中数学计算的简便方法,高中数学计算训练题的问题分享结束啦,以上的文章解决了您的问题吗?欢迎您下次再来哦!