hello大家好,我是本站的小编子芊,今天来给大家介绍一下数学的基本特点,数学差怎么办的相关知识,希望能解决您的疑问,我们的知识点较多,篇幅较长,还希望您耐心阅读,如果有讲得不对的地方,您也可以向我们反馈,我们及时修正,如果能帮助到您,也请你收藏本站,谢谢您的支持!

数学的基本特点,数学差怎么办

数学的基本特点,数学差怎么办

数学是一门普遍而重要的学科,它在我们的日常生活中无处不在。无论是在工作中还是在生活中,我们都需要运用数学的知识和技巧。有些人对于数学并不那么擅长,甚至对数学感到恐惧,这可能是因为他们没有理解数学的基本特点。

数学是一门逻辑严密的学科。它的推理过程是建立在一系列严密的定义、公理和定理之上的。只要我们掌握了基本概念和定理,就能够用逻辑的方式解决复杂的数学问题。

数学是一门具有广泛应用的学科。无论是自然科学、社会科学还是工程技术,都需要数学来进行建模和分析。通过数学的方法,我们可以更好地理解和解决实际问题。

数学也是一门需要动手实践的学科。通过解决问题和实际应用,我们才能真正理解和掌握数学的知识。数学的学习不能仅仅停留在纸上,我们需要多做练习和实践,培养自己的数学思维能力。

对于那些数学相对较差的人来说,如何提高数学水平呢?要树立正确的数学观念,相信自己能够掌握数学知识。数学是可以学习和掌握的,只要你下定决心并付出努力,一定能够取得好的成绩。

要找到适合自己的学习方法和策略。每个人的学习方式是不同的,有的人喜欢通过听课来理解数学,有的人喜欢通过阅读教材来学习数学。不管采用哪种方法,最重要的是要保持坚持和耐心,不断积累和巩固数学知识。

要善于运用数学知识解决实际问题。数学的应用才是数学的真正价值所在,通过实际问题的解决,我们才能更好地理解和掌握数学的知识。

要注意培养自己的数学思维能力。数学思维是一种抽象、逻辑和严密的思维方式,通过培养数学思维能力,我们能够更好地理解和运用数学知识。

数学是一门需要通过不断学习和实践来提高的学科。无论你对数学感到困惑还是恐惧,都不要放弃,坚持下去,相信自己一定能够取得好的成绩。只要你愿意付出努力,数学的大门就会向你打开。

数学的基本特点,数学差怎么办

数学知识的特点

1.数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系”的认识,又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的能动创造。 2.从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。 3.对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。 4.上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。” 5.对数学还有一些更加广义的理解。如,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,……,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,…,另一方面,如果所考虑的领域存在于数学之外,…,数学就起着用科学的作用…·,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动…·,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验…·,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,数学也是我们社会的教育体系中的一个教学科目.” 从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。 6.基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,它的应用的极端广泛、性,”「5」王粹坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性。 对数学本质特征的认识是发展的。变化的,用历史的、发展的观点来看待数学的本质特征,恩格斯的“纯数学的对象是现实世界的空间形式和数量关系”的论断并不过时,对初等数学来说就更是如此,对“空间形式和数量关系”的内涵,我们应当作适当的拓展和深化。顺便指出,对数学本质特征的讨论中,采取现象与本质并重、过程与结果并重、形式与内容并重的观点:,对数学教学具有重要的指导意义。 关于数学所具有的特点,可以把数学和其他学科相比较,这种特点就十分明显了。 同其他学科相比,数学是比较抽象的。数学的抽象性表现在哪里呢?那就是暂时撇开事物的具体内容,仅仅从抽象的数方面去进行研究。比如在简单的计算中,2+3既可以理解成两棵树加三棵树,也可以理解成两部机床加三台机床。在数学里,我们撇开树、机床的具体内容,而只是研究2+3的运算规律,掌握了这个规律,那就不论是树、机床,还是汽车或者别的什么事物都可以按加法的运算规律进行计算。乘法、除法等运算也都是研究抽象的数,而撇开了具体的内容。 数学中的许多概念都是从现实世界抽象出来的。比如几何学中的“直线”这一概念,并不是指现实世界中的拉紧的线,而是把现实的线的质量、弹性、粗细等性质都撇开了,只留下了“向两方无限伸长”这一属性,但是现实世界中是没有向两方无限伸长的线的。几何图形的概念、函数概念都是比较抽象的。抽象并不是数学独有的属性,它是任何一门科学乃至全部人类思维都具有的特性。只是数学的抽象性有它不同于其他学科抽象的特征罢了。 数学的抽象性具有下列三个特征:第一,它保留了数量关系或者空间形式。第二,数学的抽象是经过一系列的阶段形成的,它达到的抽象程度大大超过了自然科学中的一般抽象。从最原始的概念一直到像函数、复数、微分、积分、泛函、n维甚至无限维空间等抽象的概念都是从简单到复杂、从具体到抽象这样不断深化的过程。形式是抽象的,但是内容却是非常现实的。正如列宁所说的那样:“一切科学的(正确的、郑重的、不是荒唐的)抽象,都更深刻、更正确、更完全地反映着自然。”(《黑格尔〈逻辑学〉一书摘要》,《列宁全集》第38卷第181页)第三,不仅数学的概念是抽象的,而数学方法本身也是抽象的。物理或化学家为了证明自己的理论,总是通过实验的方法;而数学家证明一个定理却不能用实验的方法,必须用推理和计算。比如虽然我们千百次地精确测量等腰三角形的两底角都是相等的,但是还不能说已经证明了等腰三角形的底角相等,而必须用逻辑推理的方法严格地给予证明。在数学里证明一个定理,必须利用已经学过或者已经证过的概念、定理用推理的方法导出这个新定理来。我们都知道数学归纳法,它就是一种比较抽象的数学证明方法。它的原理是把研究的元素排成一个序列,某种性质对于这个序列的首项是成立的,假设当第k项成立,如果能证明第k+1项也能成立,那么这一性质对这序列的任何一项都是成立的,即使这一序列是无穷序列。 数学的第二个特点是准确性,或者说逻辑的严密性,结论的确定性。 数学的推理和它的结论是无可争辩、毋容置疑的。数学证明的精确性、确定性从中学课本中就充分显示出来了。 欧几里得的几何经典著作《几何原本》可以作为逻辑的严密性的一个很好的例子。它从少数定义、公理出发,利用逻辑推理的方法,推演出整个几何体系,把丰富而零散的几何材料整理成了系统严明的整体,成为人类历史上的科学杰作之一,一直被后世推崇。两千多年来,所有初等几何教科书以及19世纪以前一切有关初等几何的论著都以《几何原本》作为根据。“欧几里得”成为几何学的代名词,人们并且把这种体系的几何学叫做欧几里得几何学。 但是数学的严密性不是绝对的,数学的原则也不是一成不变的,它也在发展着。前面已经讲过《几何原本》也有不完美的地方,某些概念定义得不明确,采用了本身应该定义的概念,基本命题中还缺乏严密的逻辑根据。后来又逐步建立了更严密的希尔伯特公理体系。 第三个特点是应用的广泛性。 我们几乎每时每刻都要在生产和日常生活中用到数学,丈量土地、计算产量、制订计划、设计建筑都离不开数学。没有数学,现代科学技术的进步也是不可能的,从简单的技术革新到复杂的人造卫星的发射都离不开数学。 几乎所有的精密科学、力学、天文学、物理学甚至化学通常都是以一些数学公式来表达自己的定律的,并且在发展自己的理论的时候,广泛地应用数学这一工具。力学、天文学和物理学对数学的需要也促进了数学本身的发展,比如力学的研究就促使了微积分的建立和发展。 数学的抽象性往往和应用的广泛性紧密相连,某一个数量关系,往往代表一切具有这样数量关系的实际问题。一个力学系统的振动和一个电路的振荡等用同一个微分方程来描述。撇开具体的物理现象中的意义来研究这一公式,所得的结果又可用于类似的物理现象中,我们掌握了一种方法就能解决许多类似的问题。对于不同性质的现象具有相同的数学形式,就是相同的数量关系,是反映了物质世界的统一性,因为量的关系不只是存在于某一种特定的物质形态或者它的特定的运动形式中,而是普遍存在于各种物质形态和各种运动形式中,所以数学的应用是很广泛的。 正因为数学来自现实世界,正确地反映了客观世界联系形式的一部分,所以它才能被应用,才能指导实践,才表现出数学的预见性。在火箭、导弹发射之前,可以通过精密的计算,预测它的飞行轨道和着陆地点;在天体中的未知行星未被直接观察到以前,就从天文计算上预测它的存在。同样的道理也才使得数学成为工程技术中的重要工具。 下面举几个应用数学的光辉例子。 第一,海王星的发现。太阳系中的行星之一的海王星是在1846年在数学计算的基础上发现的。1781年发现了天王星以后,观察它的运行轨道总是和预测的结果有相当程度的差异,是万有引力定律不正确呢,还是有其他的原因?有人怀疑在它周围有另一颗行星存在,影响了它的运行轨道。1844年英国的亚当斯(1819—1892)利用引力定律和对天王星的观察资料,推算这颗未知行星的轨道,花了很长的时间计算出这颗未知行星的位置,以及它出现在天空中的方位。亚当斯于1845年9~10月把结果分别寄给了剑桥大学天文台台长查理士和英国格林尼治天文台台长艾里,但是查理士和艾里迷信权威,把它束之高阁,不予理睬。 1845年,法国一个年轻的天文学家、数学家勒维烈(1811—1877)经过一年多的计算,于1846年9月写了一封信给德国柏林天文台助理员加勒(1812—1910),信中说:“请你把望远镜对准黄道上的宝瓶星座,就是经度326°的地方,那时你将在那个地方1°之内,见到一颗九等亮度的星。”加勒按勒维烈所指出的方位进行观察,果然在离所指出的位置相差不到1°的地方找到了一颗在星图上没有的星——海王星。海王星的发现不仅是力学和天文学特别是哥白尼日心学说的伟大胜利,而且也是数学计算的伟大胜利。 第二,谷神星的发现。1801年元旦,意大利天文学家皮亚齐(1746—1826)发现了一颗新的小行星——谷神星。不过它很快又躲藏起来,皮亚齐只记下了这颗小行星是沿着9°的弧运动的,对于它的整个轨道,皮亚齐和其他天文学家都没有办法求得。德国的24岁的高斯根据观察的结果进行了计算,求得了这颗小行星的轨道。天文学家们在这一年的12月7日在高斯预先指出的方位又重新发现了谷神星。 第三,电磁波的发现。英国物理学家麦克斯韦(1831—1879)概括了由实验建立起来的电磁现象,呈现为二阶微分方程的形式。他用纯数学的观点,从这些方程推导出存在着电磁波,这种波以光速传播着。根据这一点,他提出了光的电磁理论,这理论后来被全面发展和论证了。麦克斯韦的结论还推动了人们去寻找纯电起源的电磁波,比如由振动放电所发射的电磁波。这样的电磁波后来果然被德国物理学家赫兹(1857—1894)发现了。这就是现代无线电技术的起源。 第四,1930年,英国理论物理学家狄拉克(1902—1984)利用数学演绎法和计算预言了正电子的存在。1932年,美国物理学家安德逊在宇宙射线实验中发现了正电子。类似的例子不胜枚举。在天体力学中,在声学中,在流体力学中,在材料力学中,在光学中,在电磁学中,在工程科学中,数学都作出了异常准确的预言。

数学学科的四大特点

,对于数学是几家欢喜几家愁,高分的同学可以达到140多甚至考到满分150分,但是有的同学可能连及格分都达不到。从整体情况来看,每年全国考研数学的平均分一般都是低于及格分的,只有80分左右。那平均分这么低,是不是说明考研数学很难呢?为了解答这个问题,大家就需要知道考研数学的基本特点了。1、稳定从每年考试大纲中反映的情况来看,考研统考的三科政治、英语、数学当中,数学的变化情况是很小的。每一年的考点和前一年相比,不论是命题方向还是试题特点上,都是在不断重复的。正是由于考研数学的稳定性,九十年代甚至是八十年代的考研真题与现在的考试试题相比,都没有发生很大的变化。它的稳定性这一特点,对我们考生的复习是很有好处的,因为这表示在新的大纲还没有出来之前,大家完全可以把去年的大纲作为指路明灯去进行复习。买翡翠先到这里看看,一手货源,原石开料,厂家直供

广告

买翡翠先到这里看看,一手货源,原石开料,厂家直供

2、基础为什么说考研数学是基础的呢?我们来看一下考试大纲对于考研数学是怎么定义的:考研数学,考查的是考生对基本概念的理解,以及运用数学的基本方法和基本理论,解决数学的基本问题的能力。这一句话充分表达了考研数学考查是每个学科内最基本的内容和最基本的考点,这也说明不需要大家对数学有多么深刻的认识,只需要理解、掌握每个学科内最基本、最简单的内容就可以了,这也是我们考研数学复习的基本方向:以基础为重。其实这也从侧面回答了考研数学难不难的问题,至少从考试大纲反映的情况来看是不会特别难的。3、综合这个特点说明虽然考研数学考查的都是很基础的点,但是不会孤立的、分开的去考查大家,而是会把很多知识点融合到一道题目当中去考核大家。题目的综合性一上来,对大家的要求也就很高了。这就要求大家在复习的过程中既要,又要系统,也就是说大家不仅要掌握各个考点,还要理解考点和考点之间的联系,只有做好了这两点,才能有得高分的可能。4、题量大考研数学的试卷一共有23道题,考试时间是180分钟,看起来题量不是很大,时间很长,但从每年实际考试的情况来看,能够完完整整做完整套试卷的考生是不超过10%的,绝大部分考生都是有会做但是没有时间做的题目,这样的话就会影响大家最后的成绩了。关于这个问题,没有任何技巧可以避免,大家只能做题,做题,再做题,通过做题加深对知识点的理解,从而提高解题的速度。在考试中做到不但要会,更要快,不但要掌握,更要熟练!以上就是考研数学的四大基本特点。所谓知己知彼百战不殆,知道了我们要面临的问题,我们才能有针对性的解决办法。考研数学到底怎么复习呢?其实答案就隐藏在这几个基本特点中,概括起来就是:先打好基础,再学会综合应用,最后提高熟练度,加快解题速度。这就是我们复习考研数学的基本方向。

数学差怎么办

1、数学是所有学科中最简单的。完全可以自学。即便你数学不好,也要保持信心,因为这个学科很简单。

2、数学的基础是很重要的。所有的数学知识都是一环跟着一环的,如果你前面基础学的不扎实,后面再学新知识就很费力。反之,如果你基础学得好,后面的知识,完全可以自学成才。所以数学的基础以及每一个环节的连续性比较重要,一定不能漏。

3、学数学的方法也很简单,就是先读概念,理解概念,然后看例题,读懂,弄明白。从一开始的知识一点一点的读,不要漏,不要急。读懂了,理解了概念之后,就要多做题了。做题是为了加深概念,加深理解,当你对概念和理论倒背如流,做题一看题目就知道答案的地步就算过关了。

如果你做题还要想一想,说明你做题少了。继续多做题吧。有时候你会做题,不代表你就能做题,因为考试是有时间 的,如果一道题你想很久才得到答案那就浪费时间了。要做题做到,不仅要能得到答案还要快速得到答案。速度也很重要。

4、数学是可以通过努力考满分的。不要着急,多做题,做得多了,自然就能考满分。数学最讲信用,你的努力不会白费,就看你努力不努力了。学习数学的技巧:

一、学会主动预习。

新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手

段。培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预

习。

二、在老师的引导下掌握思考问题的方法。

一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何

应用所学的知识去解答问题。

三、善于质疑问难。

学启于思,思源于疑。学生的积极思维往往是从有疑开始的,学会发现和提出问题是学会

创新的关键。

数学的三大特性

1.高度抽象性 :数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来 并借助于抽象发展的。

2.严密逻辑性 :数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。

3.广泛应用性:数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。

许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.

小学数学课程的三大特点

数与代数

数与代数现行大纲这部分内容主要侧重有关数、代数式、方程、函数的运算,《标准》对此作了较大地改革:1.重视数与符号意义以及对数的感受,体会数字用来表示和交流的作用.通过探索丰富的问题情景发展运算的含义,在保持基本笔算训练的前提下,强调能够根据题目条件寻求合理、简捷的运算途径和运算方法,加强估算,引进计算器,鼓励算法多样化.2.对于应用问题:选材强调现实性、趣味性和可探索性;题材呈现形式多样化(表格、图形、漫画、对话、文字等);强调对信息材料的选择与判断(信息多余、信息不足……);解决的策略多样化;问题答案可以不唯一;淡化人为编制的应用题类型及其解题分析.

3.使学生初步体会数学可以发现、描述、分析客观世界中多种多样的模式,把握事物的变化和事物间的关系;初步发展学生的符号意识,学会用符号表达现实问题中的一些基本关系,会初步进行符号运算.

4.体会方程和函数是刻划现实世界,有效地表示、处理、交流和传递信息的强有力工具,是探究事物好发展规律,预测事物发展的重要手段,重视对简单现实头问题的建模过程,学会选择有效的符号运算程序和方法解决问题,重视近似解法特别是图象解法.

第一学段

1.增加“能进行简单的四则混合运算(两步).

2.适当加强基础.

3.加强综合能力的培养.

第二学段

1.增加“结合现实情景感受大数的意义,并进行估算;发展学生的数感;加强与现实的联系.”2.增加了“了解公倍数和最小公倍数,了解公因数和最大公因数.”

3.删除“会口算百以内一位数乘、除两位数”(?教师讨论)

4.将“理解等式的性质,会用等式的性质解简单的方程”改为“能理解简单的方程.”

图形与几何

(原称空间与图形:变“空间与图形”为“图形与几何”;重提几何直观、推理能力、运算能力、逻辑思维能力,用词更加规范,体现了课标的严肃)

现行大纲这部分内容,小学主要侧重长度、面积、体积的计算,初中主要是运用逻辑证明和扩大公理化的方法呈现有关平面图形的性质,这使得学生不能将所学的几何知识与现实生活联系起来,也没有体现现代几何的发展,还往往造成不少学生因此对几何、至整个数学学习失去了兴趣和信心.为此,《标准》在重新审视几何教学目标的基础上,提出几何学习最重要的目标是使学生更好地理解自己所生存的世界,形成空间观念.并对传统的几何内容进行了较大幅度的改革:

1.设置了“空间与图形”领域,将几何学习的视野拓宽到学生生活的空间,强调空间和图形知识的现实背景,从第一学段开始使学生接触丰富的几何世界.

2.通过观察、描述、制作、从不同的角度观察物体、认识方向、制作模型等活动,发展学生的空间观念和和图形设计与推理的能力.

3.突出用观察、操作、变换、坐标、推理等多方式了解现实空间和处理几何问题,体会更多的刻划现实生活中的应用.

《标准》中还指出,逻辑证明的要求并不局限于几何内容,而应该体现在数学学习各个领域,包括代数和统计与概率等;对于几何证明的教学来说,它的目的不应当是追求证明的技巧、证明的速度和题目的难度,而应服从于使学生养成“说明有据”的态度、尊重客观事实的精神和质疑的习惯,形成证明的意识,理解证明的必要性和意义,体会证明的思想,掌握证明的基本方法等等.因此,《标准》中在强调探索图形性质的基础之上,要求证明基本图形(三角形、四边形)的基本性质,降低了对论证过程形式化和证明技巧的要求,删节去了繁难的几何证明题,旨在通过这些让学生体验逻辑证明的意义、过程,掌握基本的证明方法,同时,向学生介绍欧几里得和《几何原本》,使学生体会它们对于人类历史和思想发展中的重要作用.综上所述,《标准》大大地加强和改善了目前的几何教学.

的”图形与几何”第一学段仍分为四部分,具体表示有所变动,(1)图形的认识,(2)测量,(3)图形的运动,(4)图形与位置,

在探索、发现、确认、证明图形性质过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系.

体现增强学生“发现和提出问题、分析和解决问题”的能力要求.

“图形的运动”强调了图形的运动是研究图形性质的一种有效方法.

运动也是一种基本的数学思想.

第一学段

(1)将能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”放在第二学段.

(2)将”能在方格纸上画出简单图形的轴对称图形放在第二学段.”

第二学段

(1)删除“两点确定一条直线”和“两条直线确定一个点”

(2)增加“通过操作,了解圆的周长与直径的比为定值.

统计与概率

现行大纲中只在小学高年级和初三代数中设立一章介绍有关统计初步的内容,几乎没有涉及概率内容,同时仍然采取“定义——公式——例题——习题”的体系呈现弦计初步知识,使得学生很难得体会这部分内容与现实的联系,统计与概率对决策的作用.因此,《标准》中大大增加了“统计与概率”的内容,在三个学段根据学生的认知特点,分别设置了相应的内容,结合实际问题,体现了统计与概率的基本思想:1、反映数据统计的全过程:收集和整理数据、表示数据、分析数据、作出决策、进行交流.2、体全随机观念和用样本估计总体的初步思想,将概率统计方法作为制定决策的有力手段.3、根据数据作出推理和合理的论证,并初步学会用概率统计语言进行交流.

统 计

鼓励学生运用自己的方式呈现整理数据的结果.

⑴(第一学段)不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(放在第二学段).

这种变化有三个原因:

① 更加突出了学生对数据分析的体验,鼓励学生用自己的方式去分析数据.

② 早期经验的多样化可以为以后学习:“正规”的统计图表和统计量奠定比较牢固的基础.③ 使得统计内容在第一、二学段的要求层次更加明确.

⑵ 加强分析图表的能力里的培养.提升“读图能力”的培养.

⑶ 加强调查等活动的体验.(主要是小调查)

在收集数据方法方面,考虑到学生年龄特征,要求学生了解测量、调查等的简单方法,不要求学生从报刊、杂志、电视等去收集资料.

⑷ 第二学段与《标准》相比,在统计方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在第三学段)平均数易受极端数的影响(最大数与最小数的影响).

⑸ 另外,删去“体会数据可能产生的误导”这一要求.

概率(可能性,重视“随机现象”)

在第一学段,去掉了对此内容的要求:第二学段只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性的描述.

综合与实践

“综合与实践”是一类以问题为载体,学生主动参与的学习活动.,是帮助学生积累数学活动经验,培养学生应用意识与创新意识的重要途径.

针对问题的情景,学生综合所学的知识,和生活经验,独立思考或与他人合作经历发现问题和提出问题,分析问题和解决问题的全过程,感悟数学各部分内容之间数学与生活实际之间数学与其他学科之间的联系,加深对所教数学内容的理解.

《标准》增设“联系与综合”部分的目的是让学生在各个知识领域的学习过程中,有意识地体会数学与他们的生活经验、现实社会和其他学科的联系,以及数学在人类文明发展与进步过程中的作用;体会数学知识内在的联系.同时,采用过“综合实践活动”这种新的学习形式,通过学生的自主探索与合作交流,使他们获得综合运用数学知识和方法解决实际问题、探索数学规律的能力,逐步发展对数学的整体认识.

新的数学课程新技术对数学课程提出了新的要求,指出了新技术包括数学课程的目的、数学学习的内容以及教与学的方式等方面产生了巨大影响.因此,《标准》提出在第二学段引入计算器,并鼓励把计算器和计算机作为研究、解决问题的强有力的工具.这样可以免除学生做大量繁杂、重复的运算,从而在探索性、创造性的数学活动中投入更多的精力,解决更为广泛的现实问题.

同时,在课程实施建议中强调,有条件的地区应尽可能在教学过程中使用现代教育技术,增加数学课程的技术含量,充分利用现代教育技术在增加师生互动、形象化表示数学内容、有效处理复杂的数学运算等方面的优势,去改进学生的数学学习方式、增进学生对数学的理解,最终提高数学教学的质量.

对综合与实践的理解-------实践性﹑综合性﹑探索性

“综合与实践”应当保证每个学期至少有一次,它可以在课堂上完成,也可以在课外或课内外相结合完成.

“综合与实践”的核心是发现和提出问题,分析和解决问题,不同学段有不同的特点.

第一学段:内容安排强调时实践性和趣味性.

第二学段:

通过应用、探索和反思,加深对所学知识的理解,通过探索、引发学生学习的兴趣和培养思考的习惯,通过交流,发展理解他人、团结互助的合作精神.

启示:

启示一:坚持数学课程的三维整体目标

把促进学生的全面发展体现在新的教学课程标准中,形成了包括知识与技能、思维与能力、情感与态度 三个基本方面的目标.

启示二:以发展学生的数学思维作为课程与教学的重点之一

在教师指导下自主学习和探究问题,初步学会大知识的学习和解决问题过程中进行自我评判和调控.

让学生对知识进行系统的整理.

初步学会对已有知识经验质疑和对问题进行多方面的分析,能进行发散性思维,能提出自己的见解(算法多样化、思考问题的策略化).

初步掌握观察、操作、比较、分析、类比、归纳多种数学的思考方法和利用图表整理数据,获取信息的方法.

具有抓住现实生活的本质,进行数学抽象与概括的经历与经验.

懂得从特殊到一般,从一般到特殊以及转化的思维策略.

启示三:把解决问题置于数学课程的核心地位

在标准的修改稿中,不仅体现了解决问题的基本理念,而且在实施过程中形成自己的特色(经历探索、实践的过程).

启示四:要把促进创新和落实基础知识统一起来

数学学习中创新活动主要集中在发现问题、提出问题、分析问题和解决问题的过程中.

在上述活动中,学生已有的知识基础占有重要作用.

数学的基本特点,数学差怎么办的介绍,今天就讲到这里吧,感谢你花时间阅读本篇文章,更多关于数学的基本特点,数学差怎么办的相关知识,我们还会随时更新,敬请收藏本站。