感谢您在茫茫网海进入到我们的网站,今天有幸能与您分享关于数学思想在小学数学教学中的渗透,数学思想方法在教学中的渗透的有关知识,本文内容较多,还望您能耐心阅读,我们的知识点均来自于互联网的收集整理,不一定完全准确,希望您谨慎辨别信息的真实性,我们就开始介绍数学思想在小学数学教学中的渗透,数学思想方法在教学中的渗透的相关知识点。

数学思想在小学数学教学中的渗透,数学思想方法在教学中的渗透

数学思想在小学数学教学中的渗透,数学思想方法在教学中的渗透

数学思想是指数学中的基本概念、原理和方法。它是数学的核心,是数学的灵魂。在小学数学教学中,数学思想的渗透可以使学生更好地理解和应用数学知识,培养学生的数学思维能力和解决问题的能力。

在数学思想的引导下,教师可以通过鲜明的目标、多样化的教学手段和丰富的教学资源,为学生创设良好的学习环境,激发学生的学习兴趣和主动性。在小学一年级的数学教学中,教师可以通过生活中的实际问题,引导学生发现事物的数量关系,培养学生的数量意识和数量观念。

在教学中渗透数学思想方法,可以帮助学生形成正确的学习方法和思维方式。数学思想方法包括归纳法、演绎法、抽象思维等。在小学三年级的几何教学中,教师可以通过观察和实验,引导学生归纳出几何图形的特点和规律,从而培养学生的归纳思维能力。

数学思想在教学中的渗透可以提高学生的解决问题的能力。数学是一门以解决问题为中心的学科,培养学生解决问题的能力是小学数学教学的核心任务之一。数学思想方法的运用可以让学生在解决问题的过程中更加深入地理解和应用数学知识。在小学四年级的算术教学中,教师可以通过提供多样化的解题方法和策略,引导学生灵活运用数学思想和方法解决实际问题。

数学思想在小学数学教学中的渗透对于培养学生的数学思维能力和解决问题的能力至关重要。教师应在教学中注重培养学生的数学思维方法和解决问题的能力,创设良好的学习环境,激发学生的学习兴趣和主动性,帮助学生形成正确的学习方法和思维方式,从而提高学生的数学素养和综合能力。

数学思想在小学数学教学中的渗透,数学思想方法在教学中的渗透

为加强小学生的数学思维逻辑,提高数学课堂的教学效率,教师需采用科学有效的教学方法保证数学思想的有效渗透,从而激发学生的学习热情,强化学生的数学意识,带领学生运用数学思维解决实际生活问题。

教师在以往数学课堂内注重学生的数学成绩,未将学生在实际学习过程的数学方法进行充沛的指导,使得学生对数学问题具有一定的思想偏颇,加大教师的教学难度,无法全方位培养学生的综合能力。

教师应结合时代潮流教学方法,根据教材具体内容展开相应的教学手段,充分加强学生的数学素养,进而提高学生对数学抽象性概念的理解,强化学生的数学意识,保证数学教学任务的有效进行。

一、小学生学习特点

由于小学生的年龄较低,对事物具有极强的好奇心,无法在数学课堂上集中注意力,继而导致自身的学习效率有所下降。教师应结合学生在课上的学习状态,设计丰富的教学内容,调动学生积极性,激发学生的主观能动性,加强学生对数学基础知识的理解。教师应升华自身的教学素养,充分利用专业知识强化对学生数学思想的教育,联系实际生活内容,活跃课堂氛围,进而保证数学课堂的实效性[1]。

二、小学数学思想方法介绍

(一)数形结合法

教师要改变传统教模式中填鸭式教学方法,发挥学生的主观能动性,加强学生对事物的空间想象能力,培养学生的创新能力,使学生全面了解教师所讲的数学知识,从而激发学生的学习热情。基于此,教师可采取数形结合的教学模式帮助学生更好掌握基础知识要义,培养学生的良好学习习惯。在讲解具体内容时,教师要将抽象化概念转换为具体形象,加强学生实际的运算能力,提高数学思想在课堂上的渗透。

(二)总结法

总结法是教师常用的教学手段,通过课上最后的时间带领学生复习巩固相应的知识内容,增强学生的数学素养。数学教师可将此方法融入课堂教学,加强学生对数学知识的运用能力,帮助学生建立相应的数学体系,使其能够正确解答有关数学问题,逐步培养学生的自主学习能力。由于小学阶段是学生学习的黄金时期,教师要从多方面加强对学生综合能力的培养,实现数学课堂的有效教学,保证教学进度。

(三)转化法

学生作为独立个体听取教师讲解的数学内容会产生不同的学习效果。教师要改变传统教学氛围,创设科学有效的教学环境,保持学生整节课的充沛精力,激发学生的学习兴趣。利用转化的教学方法增强学生对抽象概念的理解能力,时刻与学生沟通交流,根据学生的具体学习情况设计丰富的教学内容,继而增强学生对数学知识后的实际运用。

三、在小学数学教学中渗透数学思想方法的途径

(一)在课后总结中提炼数学思想

小学数学教材将学生所学的重点知识内容进行充分的整理,使得学生在每章完结之后都能有效复习相应概念,教师应注重小学教材的布置内容,灵活运用课后知识增强学生的数学意识,完善学生的学习方法,逐步加强对学生数学问题的灵活运用。

比如在学习《图形的运动(二)》内容时,教师就要逐步引导学生对数学公式的理解能力,通过课后复习强化学生对数学问题的计算。首先教师要通过激趣导入吸引学生注意力,带领学生观察多媒体课件,明确抽对称的定义及性质,带领学生回顾相应的数学问题后,教师要让学生进行动手实践,将教材附页上的图形剪下,先折一折,再画出图形的对称轴,并让学生观察每个图形可以画多少对称轴,在学生实践过程中增强学生的数学思想。通过课后总结带领学生明确长方形、正方形、等腰梯形、等腰三角形、等边三角形、线段、菱形等图形的对称轴具有多少条,加强学生的学习效果,逐步培养学生的理性思维模式。

(二)在课堂教学中挖掘可利用的数学思想

为加强学生对数学思想的理解能力,教师应紧跟时代潮流发展,改变教学理念,摒弃传统教学思想,根据教材的具体内容与学生上课的实际情况,逐步挖掘可利用的数学思想,强化学生的逻辑思维,使得学生的学习效率不断增强[2]。

比如在学习《可能性》内容时,教师就要摒弃传统教学手法,采用科学有效的教学手段加强对学生的数学思想教育。首先通过问题引导引发学生的思考能力“抛硬币决定谁先开球公平吗?”带领学生初步体验事件发生的确定性与不确定性,并让学生列出简单的随机现象中所有可能发生的结果。其次教师要创设相应的问题情景,带领学生发现实际生活问题,如:哥哥弟弟都很想去电影院看电影,但是爸爸只有一张儿童票,只能给其中一个人,这时就要让学生充分思考课题采取什么样的方法保证公平,从而加深学生的可能性知识概念的运用能力,保证数学课堂的教学质量,加强学生对实际问题的数学思想。

(三)活跃数学思想氛围,调动学生积极性。

教师应明确数学思想存在于教材与学生的方方面面,需带领学生不断进行数学实践活动,侧面提高学生的数学思维逻辑,强化学生的学习方法,从多角度激发学生的学习积极性。教师要结合教材具体内容,发挥学生的主观意识,营造良好的数学思想学习氛围,采用循序渐进的教学方法,根据教材重难点知识内容,合理设计教学过程,加强学生的数学教育,发散学生的创新思维,全方位培养学生综合能力[3]。

比如在学习《百分数(一)》内容时,教师不应根据教材体现的内容进行教学,应以学生的数学思想为中心,发挥学生的创新能力。首先借用多媒体技术让学生观察每个人的不同情况,并思考如何派遣队员进行足球运动,加强学生的思考逻辑。教师应让学生针对具体问题进行小组间的合作交流,强化学生的语言表达能力,活跃课堂氛围,营造良好的学习环境,激发学生对数学的学习兴趣。教师应及时了解学生所提的数学问题时刻与学生沟通交流。优化师生之间的关系,加强对学生逻辑思维的培养,实现数学思想的深度教学作用,从而提高小学数学课堂的教学质量,全面落实数学思想教育,利用丰富的教学资源提高学生自主学习意识。

结束语:

为强化学生的数学意识,教师应全方位认识数学教材内容,利用抽象性知识体系提高学生的自主学习能力,从而实现小学课堂的有效教学。通过在课后、课时挖掘数学思想,不断加强学生对数学的认知能力,培养学生良好的学习习惯。教师应以学生为主体地位,升华自身的教学素质,使用专业的知识水平保证小学数学课堂的教学进度。

如何在小学数学教学中渗透数学思想

一、教师要将教材中的数学文化进行深入挖掘

数学文化在课堂教学中的融入一直是数学教学的重要目标。在小学数学教材中有许多文化因素。正是这些数学文化,使得小学课本内容更具有趣味性与生活性,使得小学生愿意对课本中的内容进行阅读与学习。一般来讲,课本上的数学文化经常是与数学知识相结合的,是为了引出数学知识而存在的。数学文化与数学知识一起,为小学生打造了一个丰富多彩的数学世界。也正是数学文化使得学生认清了数学与生活之间的关系,更立体地对待与观察数学学科,产生数学学习兴趣。

在小学数学教学实践中,教师可利用适当的时机对数学文化进行介绍。比如在学习小数的时候,教师可以从小数的进制方面对十进制及十进制的由来进行分析。教师可以对我国引出十进制的数学家刘徽进行介绍,提出我国早在1700多年前就开始使用十进制计数法。学生在学习小数知识的也可对我国的数学发展历史有一定的了解,在数学文化的了解与学习过程中产生强烈的民族认同感。

小学数学教师要重视自身素质的提高,对数学课本中存在的文化因素进行深入挖掘,使数学文化服务于数学知识的讲授。学生才能在学习数学的时候了解到更多的文化知识,认识到数学的文化价值,提高数学学习兴趣。

二、教师要挖掘数学文化中的丰富情感、态度和价值观

如何正确对待数学史料的问题。历史往往沉淀下许多值得流传的史实与价值观念。我们不能仅仅停留于对史实的介绍上,而应引导学生透过史实,触摸到史实背后的价值和观念,使其构成一种更有教育意义的积极影响。如祖冲之是中国古代研究圆周率的骄傲,但仅到此为止,并进行肤浅的爱国主义教育是不够的。他在研究过程中如何“借助正多边形周长研究圆周长”的数学思想和智慧;他不满足于既有不断超越、执着奋进的探索精神等,更应该透过课堂浸润到学生的内心深处。我在教学时,将这一段数学历史有机融入到具体的周长公式的探索过程中来,学生的感受更丰富了,认识也更全面了。我还适时地介绍了我国古代数学的领先与现代数学的落后,并给学生分析造成这一后果的内在原因,深刻的民族尊严感和为中华数学之崛起而奋斗的决心在学生心中升腾。

三、教师要在教学中凸显数学学科的文化属性

一些小学生认为数学与语文这类文化类的科目是相互对立的,数学与文化没有任何关系。这就要求数学教师在教学之时,突出数学学科的文化属性,使学生认识到数学文化的存在。数学是一门理论性较强的学科,学生在学习数学的时候,对于一些数学定义与规则都要进行死记硬背,这使得学生的学习积极性受到打击,对于数学学科的发展也有负面影响。在教学实践中,教师要引导学生更多地了解数学与生活之间的联系,使学生认识到数学知识与社会文化是密切相关的。

四、教师要立足课堂推进数学文化发展

课堂是一切教学研究的试验基地。数学文化在小学数学教学中的有效渗透途径最终要落实在课堂上,只有当教师和学生在课堂交流互动中自觉有意识地关注、领悟数学文化的价值,才能不断推进数学文化的发展。教师要针对数学文化的特点,在小学数学课堂教学中积极渗透、有效实施并逐步形成一系列优秀教学案例。

比如在进行《圆》的讲解时,教师就可以让学生自主发现生活中的圆形,将数学学习与生活实践进行很好的结合。教师要从中国传统文化的角度对圆形进行分析,中国人之所以喜欢圆,是因为圆无棱无角,象征着圆满与安全等。在这样的文化氛围之下,学生会对数学知识有全新的认识。小学数学课堂需要数学文化的支撑,在这样的文化影响下,学生会摆脱对于数学的刻板枯燥的印象,认识与学习数学文化。

五、教师要在课堂教学中丰富数学活动形式

数学活动是数学学习过程中的重要组成部分,教师可以利用丰富多彩的数学活动,使学生了解数学文化。游戏与竞赛是小学生喜爱的活动类型,老师可以利用竞赛小游戏引导学生对数学文化进行学习。在进行数学知识的讲解时,教师可以就与学习知识相关的数学文化进行提问,当有学生回答出时,教师给予奖励。并告诉学生,在下节课,教师还要就数学知识相关的数学文化进行提问,请同学们做好准备。在第二节课,教师可以利用抢答的形式组织学生对数学文化问题进行回答,抢答正确的学生可以获得小红花一枚。在这样的活动之下,学生的数学文化学习积极性会得到提高,学习热情也会随之高涨。

六、教师要善于利用数学文化激发学生兴趣

不同时空数学思想的对比,有利于拓宽学生的视野,培养学生全方位的认识能力和思想境界,还能让学生了解到不同文化背景下的数学观。现行的小学数学实验教材较多地介绍了数学发展的趣事轶闻、辉煌成就、数学家传记、一些数学概念产生的背景资料等数学文化资源。在教学中,适时地向学生介绍这些数学文化,可以丰富教学内容,拓展学生眼界,提高学生的学习兴趣。如:希腊数学家埃拉托斯特尼发明的寻找质数的方法、哥德巴赫猜想、分数产生的历史、“鸡兔同笼”等内容。数学课堂教学中要让学生了解一点数学史,适时进行数学发展中的趣闻轶事、数学典故、数学家传记的教育。教学时结合具体内容,适时地穿插这些数学文化,更能激发学生学习数学的兴趣。

数学思想方法在教学中的渗透

作为一名小学教师,每天的课堂教学我们总是在有意或无意的渗透着数学思想方法。美国教育心理家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法非常重要。下面我就谈谈在小学数学教学中,我是如何渗透数学思想方法:

一、改变应试教育观念,创新数学思想方法。

数学思想方法隐含在数学知识体系里,是无“形”的,而数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的。作为教师首先要改变应试教育观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。长方体和正方体的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立长方体和正方体的表象;(2)在表象的基础上,指出长方体和正方体特点,使学生对长方体和正方体有一个更深层次的认识;(3)利用长方体和正方体的各种表象,分析其本质特征,抽象概括为用文字语言表达的长方体和正方体的概念;(4)使长方体和正方体的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象,再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想方法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。

二、课堂教学中及时渗透数学思想方法。

为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。在教学过程中,我经常通过以下途径及时向学生渗透数学思想方法:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如量的计量教学,首要问题是要合理引入计量单位。作为课本不可能花大气力去阐述这个过程。但是作为教师根据教学的实际情况,适当地展示它的简单过程和所运用的思想方法,有利于培养学生的创造性思维品质和为追求真理而勇于探索的精神。在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,不仅比较出了两个图形的大小,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。(2)在问题的解决过程中渗透。如:教学“鸡兔同笼” 这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学 “梯形面积”这一单元之后,我及时帮助学生依靠梯形面积的推导过程回忆平行四边形的面积、三角形的面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。

三、让学生学会自觉运用数学思想方法。

数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程从模仿开始的。学生按照例题师范的程序与格式

小学数学思想方法的渗透

小学阶段主要渗透哪些数学思想方法 化归思想数形结合思想变换思想组合思想方程思想等。 如何渗透主要的数学思想方法 一、课堂引入,归纳渗透师:同学们,现在我们来观察一组图片。同学们在观察的过程中要说明这些图形有怎样的特点。(在萤幕上给出镜子两侧的图画,有五角星、花朵、雪花等。)生1:这些在镜子两侧的图形是一样的,就像是呈现出的倒影一样。生2:这些影象可以重叠起来。师:同学们说得都很不错,这些图形是不是以像镜子一样的一条线进行对称的?生:是。师:我们就把这种在平面内,沿着一条直线对折以后重叠的图形叫做轴对称图形。那么接下来同学们就开始看老师在黑板上呈现的这几幅图片,看看哪些是轴对称图形?教师就给学生呈现几幅轴对称图形的图片,教会学生运用归纳和演绎的数学思维方法,这样就能够使数学学习的过程变得轻松起来。二、内容拓展,联想分析师:刚才已经对轴对称的基本知识进行了了解,现在同学们来思考一下我们学过哪些图形,而这些图形又有哪些是轴对称图形呢?生1:我们之前学过长方形和正方形。这两个图形都是轴对称图形,长方形的对称轴有两个,而正方形的对称轴有四个。师:说得不错。同学们来思考一下“圆”这个图形是不是轴对称图形呢?圆形的对称轴有几条呢?生1:圆形是轴对称图形,但是圆形的对称轴好像有无数条。 小学阶段的计算教学,应该渗透哪些重要的数学思想方法 小学数学教学中渗透数学思想方法的必要性 所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法, 是指某一数学活动过程的途径、程式、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法 的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。 小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例 题的解法,也只能看到巧妙的处理,而看不到由特殊例项的观察、试验、分析、归纳、抽象概括或探索推理的 心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识 的教学。如果教师在教学中,仅仅依照课本的安排,沿袭著从概念、公式到例题、练习这一传统的教学过程, 即使教师讲深讲透,并要求学生记住结论,掌握解题的型别和方法,这样培养出来的学生也只能是“知识型” 、“记忆型”的,将完全背离数学教育的目标。 在认知心理学里,思想方法属于元认知范畴,它对认知活动起著监控、调节作用,对培养能力起著决定性 的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法 就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是 培养学生分析问题和解决问题能力的重要途径。 数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作 用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国 际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和 国际数学教育发展的必然结果。 小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强 学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个座标系,那么数学知识、技能就好 比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横 两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基 本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。 浅谈如何渗透数学思想方法 摘要:所谓数学思想,就是对数学知识和方法的本质认识,它是数学思维的结晶和概括,它直接支配着数学的实践活动,是解决数学问题的灵魂.所谓数学方法,就是数学思想的表现形式,是实现数学思想的手段和工具,是解决数学问题的根本策略和程式.方法与思想之间没有严格界限,但由于任何数学问题的解决,无不以某些数学思想作为指导.于是,数学思想带有理论特征,而数学方法却具有实践性的倾向.因此,人们习惯于把具体的、操作性较强的办法称为方法,而把那些抽象的、涉及范围较广的或框架性的办法称为思想.形象地说,一个方法像一把钥匙,一把钥匙只能开一把锁.而数学思想就相当于制造钥匙的原理,解决任何问题无不是在某种思想指导下进行的.运用数学方法解决问题的过程,就是感性认识不断积累的过程.当这种积累达到一定程度时就会产生飞跃,从而上升为数学思想.一旦数学思想形成以后,数学思想便对数学方法起著指导作用,因此,人们通常将数学思想与方法看成一个整体概念--数学思想方法.…… 图形的认识渗透哪些数学思想方法 人教版一年级上册数学《6和7的认识》教案(一)教学内容:《6和7的认识》教学目的:1、认识6、7,能正确地书写6、72、能用6、7表示生活中的各种物体。3、培养学生的数感和认真观察能力教学重点:1、区别6、7的基数意义和序数意义2、写数字,培养学生的数感教学过程:一、创设情境在电脑上出示42页认识6和7的主题图,并让学生仔细观察。1、图上有些什么?2、请同学们数一数,图上有多少人、多少桌子、椅子。学生报得数。3、你是怎样数教室里的人数的?还可以怎样数?4、你们是怎样数出椅子的数量的?(先数已经放好的6把椅子,再数又搬来的1把。)5、我们刚才都是按照1、2、3、4、5、6、7的顺序数数的。在数数中我们发现,数5个以后再数1个就是6个,接着6再数1个就是7,7比6多1,6比5多1。二、新授1、认识6和7你们都观察的很仔细,今天我们就来认识一下新朋友6和7,板书课题:6和7的认识2、你能拿出表示6的学具吗?你能用它们摆成你喜欢的图形吗?(生拿学具,师出示点子图或其他磁性教具,生动手摆,师选有创意的表扬,展示)你知道6是怎么来的吗?5的后面又该是数字几呢?师出示计数器,演示,5拨上1是6。6的后面再加1个,又是多少?计数器演示。你能拿出表示4的学具吗?并摆出你喜欢的图形。3、比较大小,前面我们认识了5,今天又认识了6和7,那你知道谁大谁小吗?5和6比谁多谁少?6和7比呢?你还能看出谁比谁少?6比7小反过来可以怎么说?4、基序数意义(1)你能从小到大数到7吗?从7开始从大到小数到1呢?(2)观察43页金鱼图,找准起点,数一数这里有几瓶金鱼?(分组活动)(3)先找一找那一瓶装了6条金鱼?从左边数起看一看是第几瓶?(4)从左边数起找到第7瓶,再数一数瓶里有多少条金鱼?5、教学6、7的写法观察字形特点,6像什么?6是一笔写完的,从田字格的上半格起笔一直写到下面再画个圆后完成,7像什么? 如何有效渗透数学思想方法 我国数学教育名家马明说过:“数学教学的本质是思维过程。”培养学生的思维能力是数学的教学目的之一,在数学教学中,思维能力的培养有赖于对数学问题的解决,教师可以在数学解题教学中培养学生的思维品质。数学问题的解决,无不以数学思想为指导,以数学方法为手段。而数学方法孕育着数学思想,数学思想中又蕴含着数学思维。数学思想方法是数学知识的精髓,是数学内容的灵魂,是数学活动的指导思想和普遍适用的方法,它能使学生领悟数学的真谛,学会数学的思考和处理问题,是学习知识、发展智力和培养能力相结合的法宝,教师要让数学思想方法成为由知识转化为能力的纽带,促使学生良好思维品质的形成和发展。 小学数学教学中应渗透哪些数学思想方法 以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。1.化归思想化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。例1 狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳20米,黄鼠狼每次可向前跳6米。它们每秒种都只跳一次。比赛途中,从起点开始,每隔15米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离20(或6)米的整倍数,又是陷阱间隔15米的整倍数,也就是20和15“ 最小公倍数”。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。2.数形结合思想数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系使问题简明直观。例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思想,还向学生渗透了类比的思想。3.组合思想组合思想是把所研究的物件进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。4.“函式”思想函式是近代数学的重要概念之一,在现代科学技术中广泛应用,在小学数学教材中,函式思想的渗透非常广泛。在第一学段,通过填图等形式,将函式思想渗透其中;在第二学段,学生掌握了许多计算公式,如s=vt等,这些计算公式实际上就是一些简单的函式关系式;到了六年级,正、反比例的意义是渗透函式思想的重要内容,因为成正比例和反比例的量反映的是两个变数之间的依存关系。还有符号思想、对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。此外还有集合思想、符号化思想、对应思想等数学思想和方法。 如何渗透数学思想方法ppt课件 数学教学有两条线,一条是明线即数学知识的教学,一条是暗线即数学思想方法的教学。而数学思想方法是数学的精髓,是学生形成良好认知结构的纽带,是知识转化为能力的桥梁,是培养学生良好的数学观念和创新思维的载体,在教学中我们必须重视数学思想方法的渗透教学。一、数学思想方法的界定数学思想是对数学知识、方法、规律的一种本质认识;数学方法是解决数学问题的策略和程式,是数学思想的具体反映;数学知识是数学思想方法的载体,数学思想较之于数学基础知识及常用数学方法又处于更高层次,它来源于数学基础知识及常用的数学方法,在运用数学基础知识及方法处理数学问题时,具有指导性的地位。对于学习者来说,运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种积累达到一定程度就会产生飞跃,从而上升为数学思想,一旦数学思想形成之后,便对数学方法起著指导作用。人们通常将数学思想与方法看成一个整体概念——数学思想方法。二、初中阶段应渗透的主要数学思想方法在初中数学教学中至少应该向学生渗透如下几种主要的数学思想方法:1.分类讨论的思想方法分类是通过比较数学物件本质属性的相同点和差异点,然后根据某一种属性将数学物件区分为不同种类的思想方法。分类讨论既是一个重要的数学思想,又是一个重要的数学方法,能克服思维的片面性,防止漏解。2.类比的思想方法类比是根据两个或两类的物件间有部分属性相同,而推出它们某种属性也相同的推理形式,被称为最有创造性的一种思想方法。3.数形结合的思想方法数形结合的思想方法是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。4.化归的思想方法所谓“化归”就是将要解决的问题转化归结为另一个较易问题或已经解决的问题。5.方程与函式的思想方法运用方程的思想方法,就是根据问题中已知量与教学法未知量之间的数量关系,运用数学的符号语言使问题转化为解方程(组)问题。用运动、变化的观点,分析研究具体问题中的数量关系,通过函式形式把这种数量关系进行刻划并加以研究,从而使问题获得解决,称为函式思想方法。6.整体的思想方法整体的思想方法就是考虑数学问题时不是着眼于它的区域性特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从巨集观上、整体上认识问题的实质,把一些彼此独立,但实质上又相互紧密联络著的量作为整体来处理的思想方法。三、数学思想方法渗透教学的途径1.在知识的发生过程中,适时渗透数学思想方法数学教学内容从总体上可分为两个层次:一个称为表层知识,包含概念、性质、法则、公式、公理、定理等基本内容;另一个称为深层知识,主要指数学思想和方法。表层知识是深层知识的基础,具有较强的操作性,学生只有通过对教材的学习,在掌握与理解了一定的表层知识后,才能进一步学习和领悟相关的深层知识。而数学思想方法又是以数学知识为载体,蕴涵于表层知识之中,是数学的精髓,它支撑和统率著表层知识。因而教师在讲授概念、性质、公式的过程中应不断渗透相关的数学思想方法,让学生在掌握表层知识的又能领悟到深层知识,从而使学生思维产生质的飞跃。只讲概念、定理、公式而不注重渗透数学思想、方法的教学,将不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高。在教学过程中要引导学生主动参与结论的探索、发现、推导过程,搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体验创造性思维活动中所经历和应用到的数学思想和方法。 如何在小学数学中渗透数学思想方法 1.提高渗透的自觉性 数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学 知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常 常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先 要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时 纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数 学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪 些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。 2.把握渗透的可行性 数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法 教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。 同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学 知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。 3.注重渗透的反复性 数学思想方法是在启发学生思维过程中逐步积累和形成的。为此,在教学中,首先要特别强调解决问题以 后的“反思”,因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。如通过 分数和百分数应用题有规律的对比板演,指导学生小结解答这类应用题的关键,找到具体数量的对应分率,从 而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透 不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练, 才能使学生真正地有所领悟。 小学数学教学中应该渗透哪些主要的数学思想方法 初级数论及运演算法则、图形、日常数学应用、初级代数概念、几何概念、集合与对应概念..

如何在数学教学中渗透数学思想方法

如何在小学数学教学过程中有效的渗透数学思想方法如果说数学起源于人类生存的需要,或者起源于人类理智探索真理的需要,那么数学思想方法就是伴随着数学的产生而产生,伴随着数学的发展而发展的,它不仅是数学的精髓,也是数学教学的灵魂,更是体现数学本质的重要方面和评价数学教学的主要依据。在小学数学教学过程中,加强数学思想方法的渗透,会有利于教师深刻地认识数学内容,有利于增强学生的数学观念和数学意识,形成学生良好的思维品质。下面从教学过程的角度关注数学思想方法,来交流自己一些不成熟、不全面的认识和看法。1.在知识的呈现过程中,适时渗透数学思想方法对于数学而言,知识的发生过程,实际上也就是思想方法的发生过程。象概念的形成过程、结论的推导过程、方法的思考过程、问题的发现过程、规律的被揭示过程等等,都蕴含着向学生渗透数学思想方法、训练思维的极好机会。对于学生来说,最常见的困难之源是:一项工作、一个发现、一个规律、……很少以创始人当初所用的形式出现,它们已经被浓缩了,隐去了曲折、复杂的思维过程,呈现出整理加工的严密、抽象、精炼的而导致其诞生的那些思想方法却往往隐为内在形式,成为数学结构系统的具有潜在价值的“内河流”。我们教学工作的一项重要任务,就是揭开数学这种严谨、抽象的面纱,将发现过程中的活生生的教学“反朴归真”地交给学生,让学生亲自参与“知识再发现”的过程,经历探索过程的磨砺,汲取更多的思维营养。在教学圆的面积时,先引导学生回忆以往在推导平行四边形、三角形、梯形等图形面积计算时的方法,再把圆转化成长方形,进而推导出圆的面积计算公式。我们从方法人手,将待解决的问题,通过某种途径进行转化,归纳成已解决或易解决的问题,最终使原问题得到解决。这样的教学活动让学生经历了知识的形成过程,渗透了化归、极限的数学思想,为后继学习起到了非常重要的作用。2.在解题思路的探索中,恰当渗透数学思想方法课堂教学中,学生是学习的主人。在学习过程中,要引导学生积极主动地参与,亲自去发现问题、解决问题、掌握方法,其实,对于数学思想方法的学习也不例外,在数学教学中,解题思路的探索过程是最基本的活动形式之一,数学问题的解答过程是对数学思想方法亲身体验和获得的过程,也是通过运用对其加深认识和理解的过程。在解决“鸡兔同笼”问题时,学生初读题目,有些无从下手。这时就需要教师引导学生用容易探究的小数量代替《孙子算经》原题中的大数量让学生探究整理,渗透了转化的思想方法;用列表法解决问题,渗透了函数的思想方法;用算术法解决问题,渗透了假设的思想方法;用方程法解决问题,渗透了代数的思想方法;在梳理方法时,利用课件出示简笔画,帮助学生理解各种算法等,渗透了数形结合的思想方法,这样将数学思想方法的渗透和知识教学紧密地结合,帮助学生掌握正确的解题方法,提高发散思维能力。3.在实际问题的解决中,灵活渗透数学思想方法解题是数学的心脏,学生不仅通过解题掌握和巩固数学基础知识,而且由于数学解题重在解题的整个过程,所以还能培养和发展学生的数学能力,而教师应对学生的解题活动加以指导,不能为了解题而解题,而忽视对思维过程的展示,要在解题过程中揭示后续解题活动中解决类似问题的通用思想方法。加强数学应用意识,鼓励学生运用数学思想方法去分析解决生活实际问题,引导学生抽象、概括、建立数学模型,探求问题解决的方法,使学生把实际问题抽象成数学问题,在应用数学知识解决实际问题的过程中进一步渗透和领悟数学思想方法。客车和货车同时从甲、乙两镇的中点向相反的方向行驶。3小时后客车到达甲镇,而货车离乙镇还有30千米。已知货车的速度是客车的3/4,求甲、乙两镇相距多少千米?分析:由题意知,客车3小时行完全程一半,货车3小时行完全程的一半少30千米。如设甲乙两镇相距z千米,依据“货车的速度是客车的3/4”,可得方程:多数学生都选用了这种方法。教学时不能停留在此,继续引导学生变换一种方式思考:将已知条件“货车的速度是客车的3/4”改变一种叙述方式“货车与客车的速度比是3:4”,因行车时间相同,所以货车与客车所行路程比是3:4,即货车行3份,客车行了4份,货车比客车少行1份少行30千米,因此易知客车行了4份行了120千米,货车行了90千米,甲乙两镇相距240千米。通过转化,使学生体会到分数应用题也可采用整数解法,即可采用比例应用题的方法进行解答,从而巩固与提高学生解答分数应用题的能力,更重要的是让学生感受到转化的方法能变繁为简、化难为易,有助于培养思维的灵活性,克服思维的呆板性。在数学解题中经常用到的还有诸如数形结合、化归、符号化等思想方法,恰当运用这些思想方法不仅能提高解题效率,还能激发学生强烈的求知欲与创造精神。在教学过程中,加强数学思想方法的渗透,在知识的呈现过程中,让学生感知数学思想方法,在解题思路的探索中,让学生感受数学思想方法,在实际问题的解决中,让学生体验数学思想方法,这不仅会提高学生的数学素养,还会为他们进一步学习数学打下扎实的基础。

数学思想在小学数学教学中的渗透,数学思想方法在教学中的渗透的问题分享结束啦,以上的文章解决了您的问题吗?欢迎您下次再来哦!