大家好,今天来为您分享初中常用定理数学,初二数学定理及公式的一些知识,本文内容可能较长,请你耐心阅读,如果能碰巧解决您的问题,别忘了关注本站,您的支持是对我们的最大鼓励!

初中常用定理数学,初二数学定理及公式

初中常用定理数学,初二数学定理及公式

在初中数学学习中,有很多常用的定理和公式,这些定理和公式对于我们解题和理解数学概念非常有帮助。下面让我们来学习一些初中常用的定理数学和初二数学定理及公式。

初中常用的定理数学。最重要的就是勾股定理。勾股定理是初中数学中的重要定理,它表明在一个直角三角形中,直角边的平方等于其他两个边平方之和。这个定理在解决与直角三角形有关的题目中非常有用。

初二数学定理及公式。初二数学中的二次根式定理是我们学习的重点。二次根式定理告诉我们,对于任意实数a和b,ab的二次根号等于a的二次根号乘以b的二次根号。这个定理在简化二次根式的过程中非常有用。

还有初二数学中的等比数列求和公式。等比数列求和公式告诉我们,如果一个数列是等比数列,那么可以通过求和公式来计算数列的和。这个公式在求等比数列的和时非常有用。

除了上述定理和公式,初中还有很多其他的定理和公式,如三角函数定理、平行线定理、余弦定理、正弦定理等等。这些定理和公式都是我们在初中数学学习中必须要掌握的内容。

初中常用的定理数学和初二数学定理及公式对于我们的数学学习非常重要。它们能够帮助我们解题、理解数学概念,提高我们的数学能力。我们要认真学习和掌握这些定理和公式,以便在数学学习中取得更好的成绩。

初中常用定理数学,初二数学定理及公式

初中十大著名数学定理如下:1、线段公理:两点之间,线段最短。

2、直线公理:过两点有且只有一条直线。

3、平行公理:过直线外一点有且只有一条直线与已知直线平行。

是否承认这条公理是欧式几何与非欧几何的区分标准;我们所学的初中数学都是属于欧式几何的范畴。

4、直线外一点与直线上各点连接的所有线段中,垂线段最短。

5、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

6、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

7、两条平行线被第三条直线所截,同位角相等。

8、两边及其夹角对应相等的两个三角形全等。(SAS)。

9、三边对应相等的两个三角形全等。(SSS)。

10、全等三角形的对应边相等,对应角相等。数学简介:亚里士多德把数学定义为“数量科学”,这个定义直到18世纪。从19世纪开始,数学研究越来越严格,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学家和哲学家开始提出各种新的定义。

这些定义中的一些强调了大量数学的演绎性质,一些强调了它的抽象性,一些强调数学中的某些话题。即使在专业人士中,对数学的定义也没有达成共识。数学是否是艺术或科学,甚至没有一致意见。许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。有些只是说,“数学是数学家做的。”

初中数学著名定理

托勒密定理:四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。蝴蝶定理:P是圆O的弦AB的中点,过P点引圆O的两弦CD、EF,连结DE交AB于M,连结CF交AB于N,则有MP=NP。帕普斯定理:设六边形ABCDEF的顶点交替分布在两条直线a和b上,那么它的三双对边所在直线的交点X、Y、Z在一直线上。高斯线定理:四边形ABCD中,直线AB与直线CD交于E,直线BC与直线AD交于F,M、N、Q分别为AC、BD、EF的中点,则有M、N、O共线。莫勒定理:三角形三个角的三等分线共有6条,每相邻的(不在同一个角的)两条三等分线的交点,是一个等边三角形的顶点。拿破仑定理:以三角形各边为边分别向外侧作等边三角形则他们的中心构成一个等边三角形。帕斯卡定理:若一个六边形内接于一条圆锥曲线,则这个六边形的三双对边的交点在一条直线上。布利安双定理:设一六角形外切于一条圆锥曲线,那么它的三双对顶点的连线共点。梅尼劳斯定理:如果一直线与三角形ABC的边BC、CA、AB分别交于L、M、N,则有:(AN/NB)*(BL/LC)*(CM/MA)=1 (考虑线段方向,则等式右边为-1)。它的逆定理:若有三点L、M、N分别在三角形ABC的边BC、CA、AB或其延长线上(至少有一点在延长线上),且满足(AN/NB)*(BL/LC)*(CM/MA)=1,则L、M、N三点共线。塞瓦定理:设O是三角形ABC内任意一点, AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1。它的逆定理:在三角形ABC三边所在直线BC、CA、AB上各取一点D、E、F,若有(BD/DC)*(CE/EA)*(AF/FB)=1,则AD、BE、CE平行或共点。斯特瓦尔特定理:在三角形ABC中,若D是BC上一点,且BD=p,DC=q,AB=c,AC=b,则AD^2=[(b*b*p+c*c*q)/(p+q)]-pq。泰博定理:取平行四边形的边为正方形的边,作四个正方形(同时在平行四边形内或外皆可)。正方形的中心点所组成的四边形为正方形;取正方形的两条邻边为三角形的边,作两个等边三角形(同时在正方形内或外皆可)。这两个三角形不在正方形边上的顶点,和正方形四个顶点中唯一一个不是三角形顶点的顶点,组成一等边三角形;给定任意三角形ABC,BC上任意一点M,作两个圆形,均与AM、BC、外接圆相切,该两圆的圆心和三角形内接圆心共线。凡·奥贝尔定理:给定一个四边形,在其边外侧构造一个正方形。将相对的正方形的中心连起,得出两条线段。线段的长度相等且垂直(凡·奥贝尔定理适用于凹四边形)。西姆松定理:从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

射影定理

直角三角形射影定理,又称“欧几里德定理”,定理的内容是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 公式表达为:如右图,在Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:①CD;=AD·DB,②BC=BD·BA , ③AC=AD·AB ; ④AC·BC=AB·CD(等积式,可用面积来证明)

AC*BC=2 S ABC

CD*AB=2 S ABC

AC*BC=AB*CD

概述

直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。公式Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:(1)(CD)^2;=AD·DB, (2)(BC)^2;=BD·BA , (3)(AC)^2;=AD·AB 。等积式 (4)ACXBC=ABXCD(可用面积来证明)

折叠直角三角形射影定理

所谓射影,就是灯光投影。直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

公式: 如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:

射影定理

折叠证明

解:

在△BAD与△ACD中,

∵∠ABD+∠BAD=90°,且∠CAD+∠C=90°,

射影定理简图

∴∠ABD=∠C,

又∵∠BDA=∠BDC=90°

∴△BAD∽△CBD

∴ AD/BD=BD/CD

即 BD=AD·DC

其余同理可得可证

射影定理

折叠内容

AB=AD·AC,BC=CD·CA

两式相加得:

AB+BC=AD·AC+CD·AC =(AD+CD)·AC=AC (即勾股定理)。 

注: AB的意思是AB的2次方。

证明

已知:三角形中角A=90度,AD是高.

证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且

BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB 同理可证其余。

证明2:由正弦定理,可得:b=asinB/sinA,c=asinC/sinA=asin(A+B)/sinA=a(sinAcosB+cosAsinB)/sinA

=acosB+(asinB/sinA)cosA=a·cosB+b·cosA. 同理可证其余。

折叠任意三角形

任意三角形射影定理又称“第一余弦定理”:

△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有

a=b·cosC+c·cosB,

b=c·cosA+a·cosC,

c=a·cosB+b·cosA。

注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。

初中数学超纲却好用的公式

1、立方和公式是有时在数学运算中需要运用的一个公式。该公式的文字表达为:两数和,乘它们的平方和与它们的积的差,等于这两个数的立方和;表达式为:(a+b)(a2-ab+b2)=a3+b3。2、圆公式:设圆半径为r,面积为S,则面积S=π·r2(π 表示圆周率)。即圆面积等于圆周率乘以圆半径的平方。3、椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

初二数学定理及公式

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等 

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 �

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

关于本次初中常用定理数学,初二数学定理及公式的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。