hello大家好,我是本站的小编子芊,今天来给大家介绍一下初中数学实数知识点总结归纳,初二数学实数知识梳理的相关知识,希望能解决您的疑问,我们的知识点较多,篇幅较长,还希望您耐心阅读,如果有讲得不对的地方,您也可以向我们反馈,我们及时修正,如果能帮助到您,也请你收藏本站,谢谢您的支持!

初中数学实数知识点总结归纳

初中数学实数知识点总结归纳,初二数学实数知识梳理

实数是数学中的一个重要概念,它包括有理数和无理数两部分。初中数学中,我们学习了实数的概念和性质,掌握了实数的四则运算以及实数之间的大小关系。

实数分为有理数和无理数两类。有理数包括整数、分数以及小数;无理数是不能表示为有理数的小数,如根号2和圆周率π等。

在进行实数的四则运算时,我们要掌握加减乘除法的规则。实数的加法满足交换律、结合律和可加性等性质;实数的减法可以转化为加法,即a-b=a+(-b);实数的乘法满足交换律、结合律和可乘性等性质;实数的除法可以转化为乘法,即a÷b=a×(1/b)。

我们还需要了解实数之间的大小关系。实数的大小关系可以通过大小符号表示,如大于(>)、小于(<)、大于等于(≥)和小于等于(≤)等。对于有理数,我们可以通过比较分子和分母的大小关系来确定大小;对于无理数,我们可以利用不同无理数的数值大小进行比较。

初中数学中,我们还学习了实数的开方和绝对值的概念。开方是指对一个数求其平方根,求平方根的结果可能是有理数也可能是无理数;绝对值是指一个数与零之间的距离,无论正负都返回一个非负的数。

初中数学中的实数知识点可以总结为实数的概念和性质、实数的四则运算、实数之间的大小关系、实数的开方以及实数的绝对值等内容。通过掌握这些知识点,我们可以更好地理解和运用实数,在解决实际问题中发挥作用。初中数学的实数知识也为后续学习打下了坚实的基础。

初中数学实数知识点总结归纳,初二数学实数知识梳理

数与代数A:数与式:

1:有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴 ②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。减法: 减去一个数,等于加上这个数的相反数。乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2:实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数/0的立方根是0/负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。3:代数式代数式:单独一个数或者一个字母也是代数式希望对你有帮助!

初中数学圆的知识点归纳总结

初中数学知识是需要总结和归纳的,不然知识就会零零散散。为了帮助同学们更好的学习。下面是由我为大家整理的“初中数学圆的知识点归纳总结”,仅供参考,欢迎大家阅读。    初中数学圆的知识点归纳总结 一、圆的定义。 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素。 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质。 1、圆的对称性。 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O的半径为r,OP=d。 7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。 (直角三角形的外心就是斜边的中点。) 8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。 9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。 则AB=(x1+x2,y1+y2) 10、圆的切线判定。 (1)d=r时,直线是圆的切线。 切点不明确:画垂直,证半径。 (2)经过半径的外端且与半径垂直的直线是圆的切线。 切点明确:连半径,证垂直。 11、圆的切线的性质(补充)。 (1)经过切点的直径一定垂直于切线。 (2)经过切点并且垂直于这条切线的直线一定经过圆心。 12、切线长定理。 (1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。 (2)切线长定理。 ∵PA、PB切⊙O于点A、B ∴PA=PB,∠1=∠2。 13、内切圆及有关计算。 (1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。 (2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。 求:AD、BE、CF的长。 分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x. 可得方程:5-x+7-x=6,解得x=3 (3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。 求内切圆的半径r。 分析:先证得正方形ODCE, 得CD=CE=r AD=AF=b-r,BE=BF=a-r b-r+a-r=c 得r=(b+a-c)/2 (4)S△ABC=abc/4r 14、(补充) (1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。 如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。 (2)相交弦定理。 圆的两条弦AB与CD相交于点P,则PAPB=PCPD。 (3)切割线定理。 如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PBPC。 (4)推论:如图,PAB、PCD是⊙O的割线,则PAPB=PCPD。 15、圆与圆的位置关系。 (1)外离:d>r1+r2,交点有0个; 外切:d=r1+r2,交点有1个; 相交:r1-r2 内切:d=r1-r2,交点有1个; 内含:0≤d (2)性质。 相交两圆的连心线垂直平分公共弦。 相切两圆的连心线必经过切点。 16、圆中有关量的计算。 (1)弧长有L表示,圆心角用n表示,圆的半径用R表示。 L=n(圆心角)xπ(圆周率)xr(半径)/180 (2)扇形的面积用S表示。 S=lr/2 (3)圆锥的侧面展开图是扇形。 r为底面圆的半径,a为母线长。 扇形的圆心角α=l/r S侧=arS全=ar+r2    拓展阅读:初中数学学习方法 1、课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。 2、课堂阅读。预习时,我们只对所要学的教材内容有了一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。 3、课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业,一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。

初二数学实数知识梳理

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。下面我给大家分享一些 八年级 上册数学的实数知识点,希望能够帮助大家! 八年级上册数学的实数知识点1 1、实数的概念及分类 ②无理数 无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: 开方开不尽的数,如 √7 ,3 √2等; 有特定意义的数,如圆周率π,或化简后含有π的数,如π /?+8等; 有特定结构的数,如0.1010010001…等; 某些三角函数值,如sin60°等 2、实数的倒数、相反数和绝对值 ①相反数 实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。 ②绝对值 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。 ③倒数 如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。 ④数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 ⑤估算 3、平方根、算数平方根和立方根 ①算术平方根 一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。 性质:正数和零的算术平方根都只有一个,0的算术平方根是0。 ②平方根 一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。 性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 开平方求一个数a的平方根的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ; a≥0 ③立方根 一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。 表示 方法 :记作 3 √a 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。 八年级上册数学的实数知识点2 1、实数大小的比较 ①实数比较大小 正数大于零,负数小于零,正数大于一切负数; 数轴上的两个点所表示的数,右边的总比左边的大; 两个负数,绝对值大的反而小。 ②实数大小比较的几种常用方法 数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 求差比较:设a、b是实数 a-b>0?a>b; a-b=0?a=b; a-b∣b∣?a 平方法:设a、b是两负实数,则 a2>b2?a 2、算术平方根有关计算(二次根式) ①含有二次根号“ √ ”;被开方数a必须是非负数。 ②性质: ③运算结果若含有“ √ ”形式,必须满足: 被开方数的因数是整数,因式是整式 被开方数中不含能开得尽方的因数或因式 3、实数的运算 ①六种运算:加、减、乘、除、乘方 、开方。 ②实数的运算顺序 先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。 ③运算律 加法交换律 a+b= b+a 加法结合律 (a+b)+c= a+( b+c ) 乘法交换律 ab= ba 乘法结合律 (ab)c = a( bc ) 乘法对加法的分配律 a( b+c )=ab+ac 如何学好小学数学的方法 一、恰当的 学习方法 和学习习惯 1、做好 课前预习 ,掌握听课主动权。课前准备的好坏,直接影响听课的效果。 2、专心听讲,做好课堂笔记。 3、及时复习,把知识转化为技能。 4、认真完成作业,形成技能技巧,提高分析解决问题的能力。 5、及时进行小结,把所学知识条理化、系统化。 我们今后还要保持“先预习、后听讲;先复习、后作业;经常进行阶段小结”的好习惯。 二、良好的学习动机和学习兴趣 学习动机是推动你们学习的直接动力。华罗庚说:“有了兴趣就会乐此不疲,好之不倦,因而,也就会挤时间来学习了。”我很高兴你们能够喜欢数学课,我希望你们在数学的学习中获得更多乐趣。 三、坚强的意志 在学习数学的过程中,你们遇到过许多大大小小的困难,你们能坚定信心,勇敢地面对困难,战胜困难,这需要坚强的意志。满怀信心地迎接困难,奋力拼搏战胜困难,就是意志坚韧的表现。你们具有这种十分可贵的品质,在学习遇到困难或挫折时,就会不灰心丧气;在取得好成绩时,也不骄傲自满,而是善于 总结 经验 教训,探索学习的规律和方法,奋勇前进。这样才取得了好成绩。 四、自信心与勤奋 数学家张广厚说:“在学习数学的道路上没有任何捷径可走,更不能投机取巧,只有勤奋地学习,持之以恒,才会得到优秀的成绩。”你们懂得“熟能生巧”的道理,经过反复练习,你们确实取得好成绩了吧! 五﹑能做到沉稳冷静的备考,用良好的心态面对考试 做到沉稳冷静的备考是非常有必要的,在考试前不心浮气躁可以让你高速而有质量的复习。用积极的心态去面对考试,能让你发挥正常水平甚至超水平发挥。 八年级上册数学的实数知识点相关 文章 : ★ 八年级数学上册知识点归纳 ★ 数学八年级上册知识点整理 ★ 八年级上册数学的知识点归纳 ★ 八年级上册数学书知识点 ★ 八年级上册数学总复习知识点 ★ 八年级数学知识点整理归纳 ★ 初二数学上册知识点总结 ★ 初二数学上册知识点 ★ 八年级上册数学知识点总结 ★ 八年级上册数学复习提纲 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

实数知识点梳理

为了方便大家系统的复习初中数学的知识点,这篇文章给大家总结梳理了初中数学重要知识点,供大家参考学习。 有理数 (1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 (2)数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。 (3)相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。 (4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 (5)有理数的加减法 同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 (6)有理数的乘法 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积为0。例:0×1=0 (7)有理数的除法 除以一个不为0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除 以任何一个不为0的数,都得0。 (8)有理数的乘方 求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n叫做指数。当a看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。 整式 (1)整式:是单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。 ①单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。 ②多项式:由若干个单项式相加组成的代数式叫做多项式。 ③系数:单项式中所有字母的指数的和叫做它的次数。 ④次数:一个单项式中,所有变数字母的指数之和,叫做这个单项式的次数。 ⑤项:组成多项式的每个单项式叫做多项式的项。 ⑥多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。 ⑦同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。 ⑧合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 (2)整式加减 整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。 一元一次方程 (1)定义: 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。 (2)解一元一次方程的步骤 ①去分母:把系数化成整数。 ②去括号 ③移项:把等式一边的某项变号后移到另一边。 ④合并同类项 ⑤系数化为1。 相交线与平行线 (1)相交线 在同一平面内,两条直线的位置关系有相交和平行两种。如果两条直线只有一个公共点时,称这两条直线相交。 (2)垂线 当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。 (3)同位角 两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。 (4)内错角 两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。 (5)同旁内角 两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。 (6)平行线 几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。 平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。 (7)平移 平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。 实数 (1)平方根 平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。 (2)立方根 如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。 立方根性质 ①在实数范围内,任何实数的立方根只有一个 ②在实数范围内,负数不能开平方,但可以开立方。 ③0的立方根是0 (3)实数 实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。 二元一次方程组 (1)定义 二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。 (2)解二元一次方程的方法 ①代入消元法。 ②加减消元法。 二次函数 (1)二次函数的三种表达式 二次函数的一般式为:y=ax+bx+c(a≠0)。 二次函数的顶点式:y=a(x-h)+k 顶点坐标为(h,k) 二次函数的交点式:y=a(x-x)(x-x) 函数与图像交于(x,0)和(x,0) (2)二次函数的性质 ①二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。 ②二次项系数a决定抛物线的开口方向和大小。 ③一次项系数b和二次项系数a共同决定对称轴的位置。 ④常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。 (3)二次函数的对称轴公式 二次函数图像是轴对称图形。对称轴为直线x=-b/2a。 对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。 特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。 a,b同号,对称轴在y轴左侧; a,b异号,对称轴在y轴右侧。

初中数学知识点归纳总结

《人教版【初中数学】知识点总结-全面整理.pdf》百度网盘资源免费下载

链接: https://pan.baidu.com/s/1Oo2ihO-smooYdOzLt50Xmg

?pwd=1m6z 提取码: 1m6z

初中数学实数知识点总结归纳,初二数学实数知识梳理的介绍,今天就讲到这里吧,感谢你花时间阅读本篇文章,更多关于初中数学实数知识点总结归纳,初二数学实数知识梳理的相关知识,我们还会随时更新,敬请收藏本站。