hello大家好,今天小编来为大家解答以下的问题,初中数学知识点圆初中数学圆的知识点归纳很多人还不知道,现在让我们一起来看看吧!

初中数学知识点圆总结

初中数学知识点圆总结,初中数学圆的知识点归纳总结

圆是初中数学中一个非常重要的几何图形,它有着很多重要的性质和应用。下面我们来归纳总结一下初中数学中关于圆的知识点。

圆的定义是平面上离一个定点距离相等的点的集合。在圆中,最重要的元素是圆心和半径。圆心是圆的中心点,通常用大写字母O表示;半径是从圆心到圆上任意一点的距离,用小写字母r表示。

初中数学中常见的与圆相关的概念有直径、弦、弧和切线。直径是通过圆心的一条线段,它的长度等于半径的两倍;弦是圆上任意两点之间的线段;弧是弦围成的一段圆弧;切线是与圆相切的直线,与圆的切点只有一个。

初中数学中经常会用到的一个重要公式是圆的面积和周长的计算方法。圆的周长也称为圆周长,它等于圆周上一周的长度,用C表示,公式为C = 2πr,其中π取近似值3.14;圆的面积用S表示,公式为S = πr²,其中π也取近似值3.14。

在解题过程中,我们还需要掌握一些与圆有关的性质。半径相等的圆互相等价;在圆上任意给定一点A,以圆心为顶点的两条边AO和AC与圆周上的弧AOB和弧ACB相等;半径垂直于弦,且弦上的中点与圆心连线垂直;相交弦定理,两个相交的弦所对的弧相等。

初中数学中还会涉及到一些与圆相关的实际问题。如何确定两个圆的位置关系,常用的方法有判断两个圆的半径之差、半径之和与圆心之间的距离之间的关系;如何求解两条切线的交点,利用切线与半径的垂直关系可以帮助我们解决这类问题。

初中数学中关于圆的知识点非常重要,掌握这些知识点可以帮助我们更好地理解和应用圆的性质。在学习过程中,我们要多进行实际问题的练习,提高自己的解题能力。通过不断的练习和我们一定可以更好地掌握圆的相关知识。

初中数学知识点圆初中数学圆的知识点归纳总结

许多同学想要了解初中数学圆的知识,那么圆的知识点总结有哪些呢?快来和我一起看看吧。下面是由我为大家整理的“初中数学圆的知识点总结归纳”,仅供参考,欢迎大家阅读。   初中数学圆的知识点总结 1.不在同一直线上的三点确定一个圆。 2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1: ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 :圆的两条平行弦所夹的弧相等 3.圆是以圆心为对称中心的中心对称图形。 4.圆是定点的距离等于定长的点的集合。 5.圆的内部可以看作是圆心的距离小于半径的点的集合。 6.圆的外部可以看作是圆心的距离大于半径的点的集合。 7.同圆或等圆的半径相等。 8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。 9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等。 10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。 11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角。 12.①直线L和⊙O相交 d  ②直线L和⊙O相切 d=r  ③直线L和⊙O相离 d>r 13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。 14.切线的性质定理 圆的切线垂直于经过切点的半径。 15.推论1 经过圆心且垂直于切线的直线必经过切点。 16.推论2 经过切点且垂直于切线的直线必经过圆心。 17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角。 18.圆的外切四边形的两组对边的和相等 外角等于内对角。 19.如果两个圆相切,那么切点一定在连心线上。 20.①两圆外离 d>R+r ②两圆外切 d=R+r  ③.两圆相交 R-rr)  ④.两圆内切 d=R-r(R>r) ⑤两圆内含dr) 21.定理 相交两圆的连心线垂直平分两圆的公共弦。 22.定理 把圆分成n(n≥3):  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。 23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。 24.正n边形的每个内角都等于(n-2)×180°/n。 25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。 26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长。 27.正三角形面积√3a/4 a表示边长。 28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。 29.弧长计算公式:L=n兀R/180。 30.扇形面积公式:S扇形=n兀R^2/360=LR/2。 31.内公切线长= d-(R-r) 外公切线长= d-(R+r)。 32.定理 一条弧所对的圆周角等于它所对的圆心角的一半。 33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径。 35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r。   拓展阅读:初中数学选择题的解法 1.直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。 2.特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关; 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。 3.淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4.逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略; 每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5.数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义; 使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。 常用的数学思想方法 1.数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义; 使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2.联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。 在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。 如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3.分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查; 这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。 4.待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。 把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。 5.配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。 配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。 6.换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。 换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。 7.分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然; 则再把它当作进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因” 8.综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到这种思维过程通常称为“由因导果” 9.演绎法:由一般到特殊的推理方法。 10.归纳法:由一般到特殊的推理方法。

初中数学圆的知识点归纳总结

初中数学知识是需要总结和归纳的,不然知识就会零零散散。为了帮助同学们更好的学习。下面是由我为大家整理的“初中数学圆的知识点归纳总结”,仅供参考,欢迎大家阅读。    初中数学圆的知识点归纳总结 一、圆的定义。 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素。 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质。 1、圆的对称性。 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O的半径为r,OP=d。 7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。 (直角三角形的外心就是斜边的中点。) 8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。 9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。 则AB=(x1+x2,y1+y2) 10、圆的切线判定。 (1)d=r时,直线是圆的切线。 切点不明确:画垂直,证半径。 (2)经过半径的外端且与半径垂直的直线是圆的切线。 切点明确:连半径,证垂直。 11、圆的切线的性质(补充)。 (1)经过切点的直径一定垂直于切线。 (2)经过切点并且垂直于这条切线的直线一定经过圆心。 12、切线长定理。 (1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。 (2)切线长定理。 ∵PA、PB切⊙O于点A、B ∴PA=PB,∠1=∠2。 13、内切圆及有关计算。 (1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。 (2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。 求:AD、BE、CF的长。 分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x. 可得方程:5-x+7-x=6,解得x=3 (3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。 求内切圆的半径r。 分析:先证得正方形ODCE, 得CD=CE=r AD=AF=b-r,BE=BF=a-r b-r+a-r=c 得r=(b+a-c)/2 (4)S△ABC=abc/4r 14、(补充) (1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。 如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。 (2)相交弦定理。 圆的两条弦AB与CD相交于点P,则PAPB=PCPD。 (3)切割线定理。 如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PBPC。 (4)推论:如图,PAB、PCD是⊙O的割线,则PAPB=PCPD。 15、圆与圆的位置关系。 (1)外离:d>r1+r2,交点有0个; 外切:d=r1+r2,交点有1个; 相交:r1-r2 内切:d=r1-r2,交点有1个; 内含:0≤d (2)性质。 相交两圆的连心线垂直平分公共弦。 相切两圆的连心线必经过切点。 16、圆中有关量的计算。 (1)弧长有L表示,圆心角用n表示,圆的半径用R表示。 L=n(圆心角)xπ(圆周率)xr(半径)/180 (2)扇形的面积用S表示。 S=lr/2 (3)圆锥的侧面展开图是扇形。 r为底面圆的半径,a为母线长。 扇形的圆心角α=l/r S侧=arS全=ar+r2    拓展阅读:初中数学学习方法 1、课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。 2、课堂阅读。预习时,我们只对所要学的教材内容有了一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。 3、课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业,一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。

圆周角定理

圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

圆周角定理的推论:

同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧。

半圆或直径所对的圆周角是直角;圆周角是直角所对的弧的半圆,所对的弦是直径。

若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。扩展资料当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:

∵OA、OC是半径

解:∴OA=OC

∴∠BAC=∠ACO(等边对等角)

∵∠BOC是△AOC的外角

∴∠BOC=∠BAC+∠ACO=2∠BAC

参考资料来源:百度百科-圆周角定理

初三数学圆的解题思路

圆的知识点主要分为下面几块:

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

希望对你有所帮助!

初中数学关于圆的作图题

结合个人解题心得,我介绍几点自己的归纳

(1)一种方法是不可能解决所有问题的。关于圆,本来就没什么公式,概念和定理是很多的。光记忆是不行的,要理解。尤其是现在的中考,如果概念不熟悉,应用题你可能连题目都看不懂。

(2)解几何题(当然也包括圆)是有基本的解法的。三种:综合法、分析法、综合分析法。

(3)在初中阶段,圆的知识的重点是角:圆心角,圆周角,弦切角,圆内角,圆外角。而圆心角,圆周角,弦切角这三类角都跟它们所夹的弧有关,因而弧是关键。因而当出现这三类角时,最好都将其转化成弧度(好好想想,这点是圆中最重要的)

(4)绝大多数和圆有关的题,用到的知识其实都不只是圆的知识,而是三角形、四边形、相似形的知识。所以如何撇开圆去寻找关于三角形、四边形、相似形等基本图形往往是解题的关键。圆只不过是个中介而已,事实上在绝大多数时候,圆只是传递角或传递边的一种工具而已。

(5)你想一想尺规作图,经常用圆规画圆,但通常只画一部分而已,圆都没画全呢。事实上这个时候,圆被用来干什么,只是截取相等的线段而已。这是传递边长的一种方式。 晕,你是要例题是吗?

看看这个网站http://sx.zsedu.net/czsx/index.asp

下载2004-2010年中考题,里面你去找圆相关的题吧,一般也有答案。

关于“初中数学知识点圆初中数学圆的知识点归纳总结”的具体内容,今天就为大家讲解到这里,希望对大家有所帮助。