hello大家好,今天小编来为大家解答以下的问题,高中数学函数归纳,关于高中函数的知识点很多人还不知道,现在让我们一起来看看吧!

高中数学函数归纳,关于高中函数的知识点总结

高中数学函数归纳,关于高中函数的知识点总结

函数是数学中一个重要的概念,它在高中数学中占有十分重要的位置。函数归纳是指通过已知的特殊情况,推导出一般性结论的方法。下面将对高中数学函数的相关知识点进行总结。

函数的定义是关系的一种,它描述了自变量和因变量之间的对应关系。函数的自变量是指输入的数值,而因变量是指函数计算得到的输出值。函数可以用公式、图像、映射等多种方式来表示。

函数的性质有多种,其中最重要的是单调性。单调性是指函数在定义域上的变化趋势,可以分为递增和递减两种情况。通过求导可以判断函数的单调性。

函数还有奇偶性和周期性的性质。奇函数是指满足f(-x)=-f(x)的函数,而偶函数是指满足f(-x)=f(x)的函数。周期性是指函数在一定区间内有重复的规律,可以通过函数的图像来观察周期性。

高中数学中还有一类特殊的函数,即反函数。反函数是指与原函数互为对应的函数。如果函数f(x)的定义域和值域分别为A和B,那么它的反函数为g(x),定义域为B,值域为A。

高中数学函数还有一些常用的函数类型,如一次函数、二次函数、指数函数、对数函数等。一次函数是指形如y=kx+b的函数,其中k表示斜率,b表示截距;二次函数是指形如y=ax²+bx+c的函数,其中a、b、c是常数;指数函数是指形如y=a^x的函数,其中a为底数;对数函数是指形如y=loga(x)的函数,其中a为底数。

高中数学函数归纳是通过已知的特殊情况,推导出一般性结论的方法。了解函数的定义、性质、反函数以及常见的函数类型,对于高中数学的学习和应用具有重要意义。

高中数学函数归纳,关于高中函数的知识点总结

高中数学中的六大类函数及其定义:

1.一次函数:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数≠0,k≠0,b为常数,),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.2.二次函数:在数学中,二次函数最高次必须为二次,二次函数(quadratic function)的基本表示形式为y=ax+bx+c.二次函数的图像是一条对称轴平行或重合于y轴的抛物线.

二次函数表达式y=ax+bx+c的定义是一个二次多项式.3.指数函数:一般地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数 .也就是说以指数为自变量,幂为因变量,底数为常量的函数称为指数函数,它是初等函数中的一种.可以扩展定义为R4.对数函数:一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.5.幂函数:一般地,形如y=xa(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.例如函数y=x0 y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数.6.三角函数:三角函数是数学中常见的一类关于角度的函数.也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义.常见的三角函数包括正弦函数、余弦函数和正切函数。拓展资料:函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。资料来源:函数_百科

数学高中函数知识点总结

知识的确是天空中伟大的太阳,它那万道光芒投下了生命,投下了力量。下面我给大家分享一些高中数学函数知识点,希望能够帮助大家,欢迎阅读! 目录 一次函数定义与定义式 一次函数的性质 一次函数的图像及性质 高中数学函数的奇偶性 高中数学函数知识点 高中数学函数知识点大全 一次函数定义与定义式 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k≠0) 一次函数的性质 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 一次函数的图像及性质 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b0时,直线只通过一、三象限;当k0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解k∈D(D为f(x)的值域); 6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min; 7.(1)(a>0,a≠1,b>0,n∈R+); (2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆; (4)alogaN=N(a>0,a≠1,N>0); 8.判断对应是否为映射时,抓住两点: (1)A中元素必须都有象且唯一; (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。 10.对于反函数,应掌握以下一些 (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数; (5)互为反函数的两个函数具有相同的单调性; (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A); 11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题; 13.恒成立问题的处理 方法 :(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解。 高中数学函数知识点 奇偶性 注图:(1)为奇函数(2)为偶函数 1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。 f(x)为奇函数《==》f(x)的图像关于原点对称 点(x,y)→(-x,-y) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。 偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。 3. 奇偶函数运算 (1) . 两个偶函数相加所得的和为偶函数. (2) . 两个奇函数相加所得的和为奇函数. (3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数. (4) . 两个偶函数相乘所得的积为偶函数. (5) . 两个奇函数相乘所得的积为偶函数. (6) . 一个偶函数与一个奇函数相乘所得的积为奇函数. 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。x叫作自变量,x的取值范围A叫作函数的定义域; 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法 (1)化归法;(2)图象法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 高中数学函数知识点大全 对数函数 对数函数的一般形式为 ,它实际上就是指数函数 的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。 指数函数 指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 如图所示为a的不同大小影响函数图形的情况。 可以看到: (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2) 指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。 (7) 函数总是通过(0,1)这点。 (8) 显然指数函数无界。 高中数学函数知识点归纳相关 文章 : ★ 高中数学函数知识归纳总结 ★ 高三数学函数知识点归纳 ★ 高一函数知识点总结归纳 ★ 高中数学函数知识点 ★ 高中数学必考知识点归纳整理 ★ 高一数学一次函数知识点总结 ★ 高一数学知识点总结归纳 ★ 高中数学知识点最新归纳 ★ 高中数学知识点大全 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高中数学归纳数列

数学归纳法是数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

数学归纳法包含以下几种: (一)第一数学归纳法

一般地,证明一个与自然数n有关的命题P(n),有如下步骤:

(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;

(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。

综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。(二)第二数学归纳法

对于某个与自然数有关的命题P(n),

(1)验证n=n0,n=n1时P(n)成立;

(2)假设n≤k时命题成立,并在此基础上,推出n=k+1命题也成立。

综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。(三)倒推归纳法

又名反向归纳法

(1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2^k,k≥1);

(2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立,

综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立;(四)螺旋式归纳法

对两个与自然数有关的命题P(n),Q(n),

(1)验证n=n0时P(n)成立;

(2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立;

综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。以下列出一个例题供理解:

问:是否存在一个等差数列{an},使得对任何自然数n,等式: a1+2a2+3a3+…+nan=n(n+1)(n+2) 都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,

先令n=1,2,3时找出来{an},然后再证明一般性. 这就是说,

当n=k+1时,也存在一个等差数列an=3n+3使a1+2a2+3a3+…+nan=n(n+1)(n+2)成立;

综合上述,可知存在一个等差数列an=3n+3,对任何自然数n,

等式a1+2a2+3a3+…+nan=n(n+1)(n+2)都成立。希望能够帮助到你~

高中数学函数公式总结大全

同角三角函数的基本关系式

倒数关系: 商的关系: 平方关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1 sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α 诱导公式

sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanαsin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanαsin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotαsin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotαsin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanαsin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanαsin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotαsin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z) 两角和与差的三角函数公式 万能公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβtanα+tanβ

tan(α+β)=——————1-tanα ·tanβtanα-tanβ

tan(α-β)=——————1+tanα ·tanβ 2tan(α/2)

sinα=——————1+tan2(α/2)1-tan2(α/2)

cosα=——————1+tan2(α/2)2tan(α/2)

tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式

sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanα

tan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3α

tan3α=——————1-3tan2α三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β

sinα+sinβ=2sin—--·cos—-—2 2α+β α-β

sinα-sinβ=2cos—--·sin—-—2 2α+β α-β

cosα+cosβ=2cos—--·cos—-—2 2α+β α-β

cosα-cosβ=-2sin—--·sin—-—2 2 1

sinα ·cosβ=-[sin(α+β)+sin(α-β)]21

cosα ·sinβ=-[sin(α+β)-sin(α-β)]21

cosα ·cosβ=-[cos(α+β)+cos(α-β)]21

sinα ·sinβ=- -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式

关于高中函数的知识点总结

高中数学的学习难度主要在于概念的深入和 方法 的抽象。高一是数学学习的起步阶段,更是重中之重。今天我在这给大家整理了高一函数知识点 总结 ,接下来随着我一起来看看吧! 高一函数知识点总结 1 高一数学 函数知识点归纳1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。 2、函数定义域的解题思路: ⑴ 若x处于分母位置,则分母x不能为0。 ⑵ 偶次方根的被开方数不小于0。 ⑶ 对数式的真数必须大于0。 ⑷ 指数对数式的底,不得为1,且必须大于0。 ⑸ 指数为0时,底数不得为0。 ⑹ 如果函数是由一些基本函数通过四则运算结合而成的,它的定义域是各个部分都有意义的x值组成的集合。 ⑺ 实际问题中的函数的定义域还要保证实际问题有意义。 3、相同函数 ⑴ 表达式相同:与表示自变量和函数值的字母无关。 ⑵ 定义域一致,对应法则一致。 4、函数值域的求法 ⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。 ⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。 ⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。 ⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。 5、函数图像的变换 ⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。 ⑵ 伸缩变换:在x前加上系数。 ⑶ 对称变换:高中阶段不作要求。 6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。 ⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。 ⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。 ⑶ 不要求集合B中的每一个元素在集合A中都有原象。 7、分段函数 ⑴ 在定义域的不同部分上有不同的解析式表达式。 ⑵ 各部分自变量和函数值的取值范围不同。 ⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。 8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。 2高一数学函数的性质1、函数的局部性质——单调性 设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。 ⑴函数区间单调性的判断思路 ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x10时,顶点为最小值,a0时的最大值或a0且a≠1)叫做指数函数 a 的取值 a>1 01时,最小值f(a),最大值f(b);0 ⑵ 对于任意指数函数y=ax (a>0且a≠1),都有f(1)=a。 2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数 a 的取值 a>1 00时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。 ⑶a<0时,幂函数在(0,+∞)区间为减函数。 当x从右侧无限接近原点时,图像无限接近y轴正半轴; 当y无限接近正无穷时,图像无限接近x轴正半轴。 幂函数总图见下页。 4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。 反函数图像与原函数图像关于直线y=x对称。 高中数学怎么学? 一、数学的学习时间应该占全部总学科的50%左右; 数学是一个费时费力的学科,无论文理。对于文科和理科来说,数学的高考成绩都是重中之重。比如文科,鲜有听到一个班文综成绩能差60分以上的,但数学别说60,80都能差出来。对于理科,物理,化学都需要大量的运算,数学的学习又是提供一种工具与思维。对于之前的文理科,抑或是现在取消文理以后的偏文,偏理科来说,数学都是非常重要的。 数学在课下学习的时间,大约应该占到整体学习的50%左右。比如每天晚上学习3个小时,至少有1个半小时要学习数学。为啥需要这么长时间?主要就是很多数学题需要相对长时间的思考与总结。相信我,当你数学成绩显著提高以后,其他学科成绩会非常容易提升。你可以做个小小的调查,但凡是数学学习成绩非常好,并且成绩很稳定的同学,他的数学相关学习时间也基本符合50%这个比例。 二、每一道数学题都值得做三遍; 对于每一道数学题(特别特别简单的除外),都要做三遍。 第1遍就是正常做,然后对照参考答案与解题思路,更正答案。 第2遍做一般是隔天效果最好,重新再快速地把之前所有的题目全部都重新做一遍,这个“做”不是和第1遍一样1字不差,从头到尾地演算。而是要针对关键步骤,关键思路进行整理。比如之前看到某一个题目的时候,我们的想法是A,结果正确的解题思路是B,A和B相比差异非常大。这个时候我们就需要通过第2遍做,更正我们的思路,纠正我们的 思维方式 ,改变我们的思考习惯。第2遍做的时候,还是出错的题目,就一定要用星号重点标注,留备复习使用。 第3遍做,最好是7天以后。时隔七天,这个时候再做一遍,你就会有豁然开朗的感觉。对于90%以上的题目,你基本上就是看到题目就知道思路是什么,解题步骤是什么,甚至你都能记得每一步之前计算的结果是什么,错在了哪里。对于之前第2遍做错了,标注星号的题目一定要认认真真,从头开始再做1次,这个时候如果还感觉不熟练,还是做错,那么就需要请出我们的错题本了。 三、要有一个自己的错题记录本; 错题本的意义,不是把每一道你做错的题目都誊写一遍,而是要把那些反复做不对,反复做都有差错的题目保存下来。错题本的本质,是对我们思维方式,思考习惯的一个纠正。在这个错题本上的题目都应该是做了3遍还会出错的题目。 而错题本的记录内容,至少应该包括下面几个内容。1是完整的题目信息;2是用自己的方式演算出的正确答案(将参考答案照抄一遍没有任何意义);3是自己对这个题目的评论,需要重点指出关键步骤,以及自己最初的想法与正确做法的差异在哪里。 错题本需要长期积累,不要1个月1个本,而是要尽量以年为单位进行更换错题本。每次考试之前,都认认真真地重做一次错题本上的题目,你会有“涅槃”的感觉,而这些题目的积累将是你学习过程中最宝贵的财富之一。 四、要看课本; 很多人觉得,数学课本可能是中学阶段最“水”的课本了,都觉得课本上的习题都简单的不行,一眼出答案,怎么就还需要看课本呢?其实,这些人都是知其然而不知其所以然。我们思考一个问题,高考考什么?高考是一个划定了考试大纲的考试,也就是所有的考试范围你是都知道的。那么什么是高考的考试大纲范围?就是我们的课本呀!!! 在经过一段时间的学习以后,比如是一个章节的学习,就一定要拿出数学课本,找一个连贯的时间,静静地读完数学课本里对应章节的每一段话,每一个字,包括所有的补充材料。课后的习题,也都要通读。在读完这些内容以后,最后还要翻开课本的目录,对应这个章节的每一个小标题,静心回忆一下每一个小标题的最重要的知识点,你最感兴趣的内容等等。 五、要构建自己的知识网络; 很多人觉得,数学的学习就是做题,把能做的题目都做了,把能改的错误都改了便能学好数学。我个人认为,这样做确实能够提高成绩,但仅仅是提高了成绩,却没有学到知识。人的认知是网状的,而不是线性的,如果想要把一个东西真的弄懂,内化成自己的知识,就一定要有层级结构记忆的概念。最终要有自己对学科的认知。 我对高中数学的认知:方程,函数,不等式,逻辑命题是基础;数列是离散化的函数;平面解析几何本质上是通过条件,列方程,解方程;立体几何属于独立部分;除此以外,还有一些其他边边角角的小知识点,比如概率论初步,微积分初步等等。 说这么多,就是希望大家最终学到手的知识,一定要一定要内化,一定要尝试构建自己的认知体系,一定要有高屋建瓴的感觉。不能专注于某一个细节“流连忘返”,而是要不断的zoom in, zoom out,平衡整体与部分的关系,建立起自己对整个数学学科的理解。 六、大型考试之前的准备工作 考试之前,需要做好3件事情。1是需要认真阅读课本目录,目录中每个标题对应的知识重点;2是需要把错题本上的所有错题全部重新过一遍;3是好好休息,没必要临时突击。 只要能做到以上6点,我相信你能够收获一个满意的成绩。 高一函数知识点总结相关 文章 : ★ 高一数学知识点总结(考前必看) ★ 高一数学幂函数知识点总结 ★ 高一数学知识点总结归纳 ★ 高中数学函数知识归纳总结 ★ 2020高一数学知识点总结 ★ 高一数学公式知识总结归纳 ★ 高一数学重点知识点公式总结 ★ 高一数学知识点总结期末必备 ★ 高一数学知识点总结(人教版) ★ 高一数学必修一知识点汇总

关于本次高中数学函数归纳,关于高中函数的知识点总结的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。