hello大家好,今天来给您讲解有关初三数学知识点归纳总结(初三数学知识点填空)的相关知识,希望可以帮助到您,解决大家的一些困惑,下面一起来看看吧!

初三数学知识点归纳总结(初三数学知识点填空)

初三数学知识点归纳总结(初三数学知识点填空)

初三数学,作为中学阶段的重要一环,是学生们进一步巩固和拓展数学基础的时期。在这个阶段,我们学习了许多重要的数学知识点,下面就来对这些知识点进行归纳总结。

我们学习了一元一次方程和一元一次不等式。在解一元一次方程时,我们应该注意分清方程中的未知数和已知数,然后运用逆运算的原理来求解。而对于一元一次不等式,我们需要注意解不等式时要考虑到不等号的方向。

我们学习了一元二次方程和二次函数。对于一元二次方程,我们可以运用配方法、因式分解、求根公式等来求解。在学习二次函数时,我们需要掌握顶点坐标、开口方向和对称轴等基本概念,并且学会绘制二次函数的图像。

初三数学还包括了平面几何和立体几何的知识点。在平面几何中,我们学习了平面图形的性质和计算面积的方法。而在立体几何中,我们需要掌握各种立体图形的性质,比如长方体、正方体、圆柱体、圆锥体和球体等。我们还需要掌握计算立体体积和表面积的公式。

初三数学还包括了概率和统计的知识点。在学习概率时,我们需要了解事件和样本空间的概念,并且掌握计算概率的方法。而在统计学中,我们需要懂得如何收集数据、整理数据和分析数据,并且掌握常用的统计图表的绘制方法。

初三数学知识点的内容非常丰富。在学习数学时,我们需要注重基础知识的打牢和运用能力的提升。通过练习题目和实际问题的解决,我们可以更好地掌握和应用这些知识点,为中学数学的学习打下稳固的基础。希望同学们能够努力学习,掌握好这些数学知识点,为将来的学习打下坚实的数学基础。

初三数学知识点归纳总结(初三数学知识点填空)

在中考数学的考试中,解答填空题的基本策略是准确、迅速、整洁。下面是我收集整理的中考数学填空题的解题技巧以供大家学习。 数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是中考数学中的三种常考题型之一。它和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍、跨度大、知识覆盖面广、考查目标集中,形式灵活,答案简短、明确、具体,评分客观、公正、准确等。 填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题。 这说明了填空题是数学中考命题重要的组成部分,它约占了整张试卷的三分之一。我们在备考时,既要关注这一新动向,又要做好应试的技能准备。解题时, 要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整。 合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求。 解答填空题的基本策略是准确、迅速、整洁。准确是解答填空题的先决条件,填空题不设中间分,一步失误,全题无分,所以应仔细审题、深入分析、正 确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于填空题的答题时间,应该控制在不超过20分钟左右,速度越快越好,要避免“超时失 分”现象的发生;整洁是保住得分的充分条件,只有把正确的答案整洁的书写在答题纸上才能保证阅卷教师正确的批改,在网上阅卷时整洁显得尤为重要。中考中的 数学填空题一般是容易题或中档题,数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合 乎逻辑的推演和判断。求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。 一、直接法 这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解填空 题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。 二、特殊化法 当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的 恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。 三、数形结合法 “数缺形时少直观,形缺数时难入微。”数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关 系,通过形的形象、直观揭示出来,以达到“形帮数”的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到“数促形”的目的。对于一 些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。 四、等价转化法 通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。 中考数学方法推荐: 回归课本 无论是中考还是高考的复习都有两轮。第一轮就是基本上让学生把在初一、初二或者是初三上学期学的内容再回忆起来。第一轮复习更多侧重于知识的回顾;而第二轮复习,则需要做好以下几件事。 第一,合理回归教材,将书读薄。学生需要对整个初中数学的知识结构有个清晰的认识,这样在做题的时候才能发现考点在哪里;第二,温故而知新。以新的视角去发现知识间的内在联系,对数学思想方法有更进一步的认识;第三,合理利用。即对书中某些典型例题、习题应当合理利用,变式拓展,总结方法,便于学生掌握。这是因为命题的老师很喜欢把书上的课题进行一个拓展之后作为我们的考题,同时也让学生更重视课本。 调整策略 在考试的过程中,有的同学“艺高人胆大”,拿了试卷就直接从后往前做;有的同学则“争分夺秒”,答题铃声还没响就匆匆做题,这些都是不可取的。 中考数学试卷是有一定梯度的,答题时一定要从前往后答,切忌从后往前答或从中间向前后答。这是因为前面题简单,容易做,能够给考生“旗开得胜”的快感,使考生紧张心情马上得到平静。在答题的铃声没响前也不要急着答题。如果被监考老师发现而被责备会更加紧张影响答题。这时候可以看一看最后的一两道压轴题。在看的时候就可以预估一下整套试卷的难易度,同时制定答题策略。假如觉得这一份试卷不难,那就可以在前面的题目多花些时间,将答题书写整齐有条理。如果觉得压轴题十分难,就要争取把题目能做多少做多少,不能后面几大题都空着。这时候书写潦草一点,过程简单点都是可以的。 控制得分点 在答题的时候,抓住得分点是重点也是难点,需要区分对待。第1~16题属于客观题,此类题只要结果不要过程,要注意顺手解答,即一边看题一边写答案。在这一回合,大部分考生都能拿到39分左右。第17题和21题要求考生书写要规范、严谨,答案要完整。答卷时要紧扣得分点,不要丢答题的步骤,在弄不清得分点的情况下,宁多写勿少写,字迹要清晰,切忌留白空。而第 22、23题,一般设有1~3个小问题,涉及的知识点多,且是有些题阅读量大、综合性、技巧性强的“压轴题”。这时候千万不要放弃解答。第1问、第2问思维含量不是很高,因此不要轻易放弃,只要你平时成绩不是很差,你一般都能拿到分。但对于最后一问,建议水平一般的考生在明知“不可为”的情况下切莫“强为之”。因为这道题除了具有知识点多、阅读量大、综合性、技巧性强的特点以外,还具有较强的选拔性,难度比较大。与其说吊死在“压轴题”这棵树上,倒不如回到前面去检查那些基础题、中档题有没有做错。一道基础题的分数与大题一个问的分数差不多,而一道中档题比压轴题才少两分。

初三数学知识点归纳

想了解初中数学知识,想提高数学成绩的小伙伴,赶紧过来瞧一瞧吧。下面由我为你精心准备了“初三数学知识点归纳”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!   初三数学知识点归纳 一、有理数。 1、大于0的数叫做正数。 2、在正数前面加上负号“-”的数叫做负数。 3、整数和分数统称为有理数。 4、人们通常用一条直线上的点表示数,这条直线叫做数轴。 5、在直线上任取一个点表示数0,这个点叫做原点。 6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。 7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。 8、正数大于0,0大于负数,正数大于负数。 9、两个负数,绝对值大的反而小。 10、有理数加法法则。 (1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 (3)一个数同0相加,仍得这个数。 二、整式的加减。 1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。 2、单项式中的数字因数叫做这个单项式的系数。 3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。 4、几个单项的和叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项。 5、多项式里次数最高项的次数,叫做这个多项式的次数。 6、把多项式中的同类项合并成一项,叫做合并同类项。 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。 7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。 8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。 三、一元一次方程。 1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程。 2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。 3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。 4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。 6、把等式一边的某项变号后移到另一边,叫做移项。 7、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间。 盈亏问题:利润=售价-成本利率=利润÷成本×100%。 售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间。 本息和=本金+利息。 四、图形初步认识。 1、我们把实物中抽象的各种图形统称为几何图形。 2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。 3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。 4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 5、几何体简称为体。 6、包围着体的是面,面有平的面和曲的面两种。 7、面与面相交的地方形成线,线和线相交的地方是点。 8、点动成面,面动成线,线动成体。 9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。 简述为:两点确定一条直线(公理)。 10、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。   拓展阅读:数学学习方法 1.求教与自学相结合。 在学习过程中,即要争取教师的指导和帮助,但是又不能处处依赖教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。 2.学习与思考相结合。 在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。 3.学用结合,勤于实践。 在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。 4.博观约取,由博返约。 课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。 5.既有模仿,又有创新。 模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。 6.及时复习增强记忆。 课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。 7.阅读理解。 目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。 8.提高听课质量要培养会听课,听懂课的习惯。 注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。   初中数学速记口诀 1.最简根式的条件。 最简根式三条件,号内不把分母含。 幂指(数)根指(数)要互质,幂指比根指小一点。 2.特殊点的坐标特征。 坐标平面点(x,y),横在前来纵在后。 (+,+),(-,+),(-,-)和(+,-),四个象限分前后。 x轴上y为0,x为0在y轴。 3.象限角的平分线。 象限角的平分线,坐标特征有特点。 一、三横纵都相等,二、四横纵确相反。 4.平行某轴的直线。 平行某轴的直线,点的坐标有讲究。 直线平行x轴,纵坐标相等横不同。 直线平行于y轴,点的横坐标仍照旧。 5.对称点的坐标。 对称点坐标要记牢,相反数位置莫混淆。 x轴对称y相反,y轴对称,x前面添负号。 原点对称最好记,横纵坐标变符号。 6.自变量的取值范围。 分式分母不为零,偶次根下负不行。 零次幂底数不为零,整式、奇次根全能行。 7.函数图象的移动规律。 左右平移在括号,上下平移在末稍。 左正右负须牢记,上正下负错不了。 8.一次函数的图象与性质的口诀。 一次函数是直线,图象经过三象限。 正比例函数更简单,经过原点一直线。 两个系数k与b,作用之大莫小看。 k是斜率定夹角,b与y轴来相见。 k为正来右上斜,x增减y增减。 k为负来左下展,变化规律正相反。 k的绝对值越大,线离横轴就越远。 9.二次函数的图象与性质的口诀。 二次函数抛物线,图象对称是关键。 开口、顶点和交点,它们确定图象现。 开口、大小由a断,c与y轴来相见。 b的符号较特别,符号与a相关联。 10.反比例函数的图象与性质的口诀。 反比例函数有特点,双曲线相背离得远。 k为正,图在一、三(象)限,k为负。 图在二、四(象)限;图在一、三函数减,两个分支分别减。 图在二、四正相反,两个分支分别增。 11.平行四边形的判定。 要证平行四边形,两个条件才能行。 一证对边都相等,或证对边都平行。 一组对边也可以,必须相等且平行。 对角线,是个宝,互相平分“跑不了”。 对角相等也有用,“两组对角”才能成。 12.二次函数抛物线。 选定需要三个点,a的正负开口判。 c的大小y轴看,△的符号最简便。 x轴上数交点,a、b同号轴左边。 抛物线平移a不变,顶点牵着图象转。 三种形式可变换,配方法作用最关键。

初三数学知识点归纳上册

数学是许多同学的短板,那么初三数学上册的知识点有哪些呢?快来一起了解一下吧。下面是由我为大家整理的“初三数学上册知识点归纳”,仅供参考,欢迎大家阅读。   初三数学上册知识点归纳 二次根式 1、二次根式 式子叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。 2、最简二次根式 若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。 化二次根式为最简二次根式的方法和步骤: (1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。 (2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。 3、同类二次根式 几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。 4、二次根式的性质 5、二次根式混合运算 二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。 一元二次方程 一、一元二次方程 1、一元二次方程 含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式 ,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。 二、一元二次方程的解法 1、直接开平方法 2、配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其 3、公式法 4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 三、一元二次方程根的判别式 根的判别式 四、一元二次方程根与系数的关系 旋转 一、旋转 1、定义 把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。 2、性质 (1)对应点到旋转中心的距离相等。 (2)对应点与旋转中心所连线段的夹角等于旋转角。 二、中心对称 1、定义 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 2、性质 (1)关于中心对称的两个图形是全等形。 (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 4、中心对称图形 把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。 坐标系中对称点的特征: 1、关于原点对称的点的特征 两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)。 2、关于x轴对称的点的特征 两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)。 3、关于y轴对称的点的特征 两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)。   拓展阅读:初三数学怎么快速提高 时间分配精细化 数学中考复习应早作打算和安排,授课教师应针对学校教学实际和学生特点,制订详实切实可行的计划。一般在3月底完成新授课任务,4月上旬启动中考复习。4月底完成第一轮“夯实基础”复习,全面系统复习,以课本为本,分单元、章节,依据课程标准、中考说明要求复习,强化知识点、单元章节、考点过关训练,夯实基础,培养基本技能;5月底完成第二轮“专题训练”复习,巩固基础,构建知识网络,使之条理化、系统化,强化分块综合和专项知识训练,突破重点、难点,突出训练灵活运用知识,培养解决实际问题的能力,查补知识盲点,加强训练;6月上旬至中考前完成第三轮“综合检测”复习,回扣双基,排查考点,查漏补缺,注重综合模拟,加强学生应试技巧和解题方法指导,减少非智力因素失分。 中考说明牢记化 作为老师要深入研究中考说明,掌握知识点和考纲中的难易度。在复习时老师要以《考试说明》中的要求为基础,重视基础知识的复习,并不一味强调难题或偏题的训练,而要根据命题难易程度等特点,有针对性的进行复习。 复习资料精选化 在复习时精选资料、用好资料。在复习之初老师就要为学生精心挑选了几份资料,进行比较后确定一到两份知识点全,难度适中的资料作为课内复习用书。学生手头复习资料不宜过多,多了反而乱,容易产生这样没完成,那样才做一点点的感觉,这样容易造成知识点的遗漏,同时也会使学生产生烦燥的心理。教师要替学生细心挑选复习资料,并让学生明白数学复习资料应精而不应多的道理。 基本概念习题化 数学概念的复习不是简单的重复,而是要建立概念之间的有机联系,不能死记硬背,要会解决实际问题。初中数学中涉及到有关“式”的概念比较多,有“代数式”、“整式”、“单项式”、“多项式”、“同类项”、“分式”、“有理式”、“最简分式”、“二次根式”、“最简二次根式”、“同类二次根式”等概念,教师要针对这些概念编一到两个习题引导学生弄清这些概念之间的联系与区别。但有一点值得肯定的是,要想用这些概念去解题,首先必须将它们熟记于心。

初三数学知识点归纳北师大版

第一章 特殊平行四边形1.1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 菱形是轴对称图形,每条对角线所在的直线都是对称轴。※菱形的判别方法:一组邻边相等的平行四边形是菱形。对角线互相垂直的平行四边形是菱形。四条边都相等的四边形是菱形。1.2 矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。对角线相等的平行四边形是矩形。四个角都相等的四边形是矩形。※推论:直角三角形斜边上的中线等于斜边的一半。1.3 正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。 正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。※两条腰相等的梯形叫做等腰梯形。※一条腰和底垂直的梯形叫做直角梯形。※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形。※三角形的中位线平行于第三边,并且等于第三边的一半。※夹在两条平行线间的平行线段相等。※在直角三角形中,斜边上的中线等于斜边的一半第二章 一元二次方程2.1 认识一元二次方程2.2 用配方法求解一元二次方程2.3 用公式法求解一元二次方程2.4 用因式分解法求解一元二次方程2.5 一元二次方程的跟与系数的关系2.6 应用一元二次方程※只含有一个未知数的整式方程,且都可以化为 (a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。※把 (a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。※解一元二次方程的方法:①配方法 即将其变为 的形式>②公式法 (注意在找abc时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成 的形式;⑥两边开方求其根。※根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac。(通常第二种方法更适用)※反比例函数的图象由两条曲线组成,叫做双曲线 ※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;②选取的点越多画的图越准确;③画图注意其美观性(对称性、延伸特征)。※反比例函数性质:①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y随x的增大而增大;③双曲线的两支会无限接近坐标轴(x轴和y轴),但不会与坐标轴相交。※反比例函数图象的几何特征:(如图4所示) 点P(x,y)在双曲线上都有

初三数学知识点归纳总结

初三数学知识点整理1 1.数轴 (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴. 数轴的三要素:原点,单位长度,正方向。 (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.) (3)用数轴比较大小:当数轴方向朝右时,右边的数总比左边的数大。 重点知识: 初中数学第一课,认识正数与负数!新初一的来~ 2.相反数 (1)相反数的概念:只有符号不同的两个数叫做互为相反数. (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。 (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。 (4)规律方法求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。 3.绝对值 1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。 ①互为相反数的两个数绝对值相等; ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数. ③有理数的绝对值都是非负数. 2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定: ①当a是正有理数时,a的绝对值是它本身a; ②当a是负有理数时,a的绝对值是它的相反数﹣a; ③当a是零时,a的绝对值是零. 即|a|={a(a>0)0(a=0)﹣a(a0k0时,函数图像的两个分支分别 在第一、三象限。在每个象限内,y 随x 的增大而减小。 ①x的取值范围是x0, y的取值范围是y0; ②当k0抛物线与x轴有两个不同交点. ②△=0抛物线与x轴有的公共点(相切). ③△0时,抛物线有最低点,函数有最小值. ②当a<0时,抛物线有点,函数有值. (7)的符号的判定: 表达式,请代值,对应y值定正负; 对称轴,用处多,三种式子相约; 轴两侧判,左同右异中为0; 1的两侧判,左同右异中为0; -1两侧判,左异右同中为0. (8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。 (9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。 (10)①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0; ②二次函数(的顶点在y轴上二次函数的图象关于y轴对称; ③二次函数(经过原点,则。 (11)二次函数的解析式: ①一般式:(,用于已知三点。 ②顶点式:,用于已知顶点坐标或最值或对称轴。 (3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。 初三数学知识点整理2 知识点1。概念 把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形) 解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到。 (2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同。 (3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关。 知识点2。比例线段 对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段。 知识点3。相似多边形的性质 相似多边形的性质:相似多边形的对应角相等,对应边的比相等。 解读:(1)正确理解相似多边形的定义,明确“对应”关系。 (2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性。 知识点4。相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形。 解读:(1)相似三角形是相似多边形中的一种; (2)应结合相似多边形的性质来理解相似三角形; (3)相似三角形应满足形状一样,但大小可以不同; (4)相似用“∽”表示,读作“相似于”; (5)相似三角形的对应边之比叫做相似比。 知识点5。相似三角的判定方法 (1)定义:对应角相等,对应边成比例的两个三角形相似; (2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似。 (3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。 (4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。 (5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似。 (6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似。 知识点6。相似三角形的性质 (1)对应角相等,对应边的比相等; (2)对应高的比,对应中线的比,对应角平分线的比都等于相似比; (3)相似三角形周长之比等于相似比;面积之比等于相似比的平方。 (4)射影定理 初三数学知识点整理3 三角形 分类:⑴按边分; ⑵按角分 1.定义(包括内、外角) 2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中, 3.三角形的主要线段 讨论:①定义②线的交点三角形的心③性质 ① 高线②中线③角平分线④中垂线⑤中位线 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形 4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS) ⑵特殊三角形全等的判定:①一般方法②专用方法 6.三角形的面积 ⑴一般计算公式⑵性质:等底等高的三角形面积相等。 7.重要辅助线 ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线 8.证明方法 ⑴直接证法:综合法、分析法 ⑵间接证法反证法:①反设②归谬③结论 ⑶证线段相等、角相等常通过证三角形全等 ⑷证线段倍分关系:加倍法、折半法 ⑸证线段和差关系:延结法、截余法 ⑹证面积关系:将面积表示出来 初三数学知识点整理4 一元一次方程: ①在一个方程中,只含有一个未知数,并且未知数的指数是 1、这样的方程叫一元一次方程。 ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤: 去分母,移项,合并同类项,未知数系数化为1。 二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。 解二元一次方程组的方法:代入消元法/加减消元法。 2、不等式与不等式组 不等式: ①用符号”=“号连接的式子叫不等式。 ②不等式的两边都加上或减去同一个整式,不等号的方向不变。 ③不等式的两边都乘以或者除以一个正数,不等号方向不变。 ④不等式的两边都乘以或除以同一个负数,不等号方向相反。 不等式的解集: ①能使不等式成立的未知数的值,叫做不等式的解。 ②一个含有未知数的不等式的所有解,组成这个不等式的解集。 ③求不等式解集的过程叫做解不等式。 一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。 一元一次不等式组: ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。 ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 ③求不等式组解集的过程,叫做解不等式组。 3、函数 变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 一次函数: ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。 ②当B=0时,称Y是X的正比例函数。 一次函数的图象: ①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数Y=KX的图象是经过原点的一条直线。 ③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。 ④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的'增大而减少。 空间与图形 图形的认识: 1、点,线,面 点,线,面: ①图形是由点,线,面构成的。 ②面与面相交得线,线与线相交得点。 ③点动成线,线动成面,面动成体。 展开与折叠: ①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。 ②N棱柱就是底面图形有N条边的棱柱。 截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧,扇形: ①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。 ②圆可以分割成若干个扇形。 角 线: ①线段有两个端点。 ②将线段向一个方向无限延长就形成了射线。射线只有一个端点。 ③将线段的两端无限延长就形成了直线。直线没有端点。 ④经过两点有且只有一条直线。 比较长短: ①两点之间的所有连线中,线段最短。 ②两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示: ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。 ②一度的1/60是一分,一分的1/60是一秒。 角的比较: ①角也可以看成是由一条射线绕着他的端点旋转而成的。 ②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。 ③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 平行: ①同一平面内,不相交的两条直线叫做平行线。 ②经过直线外一点,有且只有一条直线与这条直线平行。 ③如果两条直线都与第3条直线平行,那么这两条直线互相平行。 垂直: ①如果两条直线相交成直角,那么这两条直线互相垂直。 ②互相垂直的两条直线的交点叫做垂足。 ③平面内,过一点有且只有一条直线与已知直线垂直。 2、相交线与平行线 角: ①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。 ②同角或等角的余角/补角相等。 ③对顶角相等。 ④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。 初三数学知识点整理5 重点代数式的有关概念及性质,代数式的运算 ☆内容提要☆ 一、重要概念 分类: 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如, =x,=│x│等。 4.系数与指数 区别与联系:①从位置上看;②从表示的意义上看 5.同类项及其合并 条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律 6.根式 表示方根的代数式叫做根式。 含有关于字母开方运算的代数式叫做无理式。 注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。 7.算术平方根 ⑴正数a的正的平方根(0与平方根的区别]); ⑵算术平方根与绝对值 ①联系:都是非负数,=│a│ ②区别:│a│中,a为一切实数;中,a为非负数。 8.同类二次根式、最简二次根式、分母有理化 化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。 满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。 把分母中的根号划去叫做分母有理化。 9.指数 ⑴(幂,乘方运算) ①0时,②a0时,0(n是偶数),0(n是奇数) ⑵零指数:=1(a0) 负整指数:=1/0,p是正整数) 二、运算定律、性质、法则 1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质 ⑴基本性质:=0) ⑵符号法则: ⑶繁分式:①定义;②化简方法(两种) 3.整式运算法则(去括号、添括号法则) 4.幂的运算性质:①=②=③=④=⑤ 技巧: 5.乘法法则:⑴单⑵单⑶多多。 6.乘法公式:(正、逆用) (a+b)(a-b)= (ab)= 7.除法法则:⑴单⑵多单。 8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。 9.算术根的性质:=0,b0,b0)(正用、逆用) 10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.B.C.. 11.科学记数法:a10,n是整数= 三、应用举例(略) 四、数式综合运算(略) 初三数学知识点整理6 二元一次方程组 1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。 2、二元一次方程组的解法 (1)代入法 由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。 (2)因式分解法 在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。 (3)配方法 将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。 (4)韦达定理法 通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。 (5)消常数项法 当方程组的两个方程都缺一次项时,可用消去常数项的方法解。 解一元二次方程 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。 1、直接开平方法: 用直接开平方法解形如(x—m)2=n(n≥0)的方程,其解为x=±m。 直接开平方法就是平方的逆运算。通常用根号表示其运算结果。 2、配方法 通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。 (1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式) (2)系数化1:将二次项系数化为1 (3)移项:将常数项移到等号右侧 (4)配方:等号左右两边同时加上一次项系数一半的平方 (5)变形:将等号左边的代数式写成完全平方形式 (6)开方:左右同时开平方 (7)求解:整理即可得到原方程的根 3、公式法 公式法:把一元二次方程化成一般形式,然后计算判别式△=b2—4ac的值,当b2—4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2—4ac≥0)就可得到方程的根。 代数式 1、代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 整式和分式统称为有理式。 2、整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3、单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明: ①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。 ②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。 4、同类项及其合并 条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律。

END,关于“初三数学知识点归纳总结(初三数学知识点填空)”的具体内容就介绍到这里了,如果可以帮助到大家,还望关注本站哦!