大家好,今天来为您分享初中数学知识点总结及公式大全(初中数学知识点总结大纲)的一些知识,本文内容可能较长,请你耐心阅读,如果能碰巧解决您的问题,别忘了关注本站,您的支持是对我们的最大鼓励!

初中数学知识点总结及公式大全(初中数学知识点总结大纲)

初中数学知识点总结及公式大全(初中数学知识点总结大纲)

初中数学是建立在小学数学基础上的重要一环,是学生理解和掌握高中数学的基础。下面是初中数学知识点总结及公式大全的大纲。

一、数的基本运算:包括整数、分数、小数的加减乘除法等。整数运算时要注意正负数的运算规则,分数运算时要注意分数的化简。

二、代数式和方程:代数式是由字母和数字组成的式子,而方程则是带有等号的代数式。学生需学会各类代数式的化简和方程的解法。

三、图形的认识与运用:包括平面图形的性质和计算面积、周长等,空间图形的认识和计算体积等。学生需熟悉各类图形的性质和计算方法。

四、比例与百分数:比例是指两个或多个数之间的比较关系,百分数则是以100为比例单位的比例数。学生需学会比例的计算和百分数的运用。

五、直线与角:学生需学会直线的性质和角的度量、分类等。需掌握直线与角的相关运算和计算方法。

六、函数与图像:学生需理解函数的概念和图像的特征,掌握函数图像的绘制和变化规律的分析。

七、统计与概率:包括数据的整理、图表的制作和概率的计算等。学生需学会统计数据的分析和概率的计算方法。

以上仅为初中数学知识点总结的大纲,具体的知识点和公式较多,需要学生通过课本、习题和练习题进行巩固和掌握。

下面是初中数学常用的公式大全:

1. 长方形的面积公式:面积 = 长 × 宽

2. 正方形的面积公式:面积 = 边长 × 边长

3. 圆的面积公式:面积 = π × 半径 × 半径

4. 三角形的面积公式:面积 = 底边 × 高/2

5. 平行四边形的面积公式:面积 = 底边 × 高

6. 体积公式:体积 = 底面积 × 高

7. 一元一次方程的解法:x = -b/a

8. 直角三角形勾股定理:c² = a² + b²

9. 百分数计算公式:百分数 = 数值/总数 × 100%

10. 等腰三角形的面积公式:面积 = 底边 × 高/2

以上是初中数学知识点总结及公式大全的大纲,希望对初中学生学习数学有所帮助。学生在学习过程中,应多做题,不断巩固和提升自己的数学水平。

初中数学知识点总结及公式大全(初中数学知识点总结大纲)

初中数学都学哪些内容? 代数部分: 1、有理数、无理数、实数 2、整式、分式、二次根式 3、一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式 4、函数(一次函数、二次函数、反比例函数) 5、统计初步 几何部分 1、线段、角 2、相交线、平行线 3、三角形 4、四边形 5、相似形 6、圆 初中数学都学习哪些内容呀 代数部分:1、有理数、无理数、实数2、整式、分式、二次根式3、一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式4、函数(一次函数、二次函数、反比例函数)5、统计初步几何部分1、线段、角2、相交线、平行线3、三角形4、四边形5、相似形6、圆这里是初中数学电子课本:pep../czxjcjf/index.htm 初中数学考编,考哪些内容? 考初一初二初三 侧重于初二初三。以代数 方程 几何 综合题 每年基本和上一年的差不多 初中数学有哪些内容? 我只能给你总结一些知识点,见谅见谅初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们江苏省泰州市的中考中是这样的)。代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。以上就是我对初中数学知识的这毕竟是我的东西,我是个高中生,初中的课本我也有一段时间没碰过了,有遗漏之处,就要靠你的努力了(不好意思,题目我也没有)易错题型你可以看看"天骄之路"丛书或上网搜索,最好是向老师要一点资料. 1、有理数的认识和计算、科学技术法、2、平行、3、多边形、4、不等式5、一元一次方程6、一元一次不等式7、二元一次方程组8、统计麻烦采纳,谢谢! 初中数学大纲,初中数学在各个年级学哪些内容 人教版初中数学教科书目录七年级上册第一章 有理数1.1  正数和负数1.2 有理数(数轴|相反数|绝对值)1.3  有理数的加减法1.4  有理数的乘除法1.5  有理数的乘方(科学计数法)第二章 整式的加减2.1  整式2.2  整式的加减第三章 一元一次方程3.1  从算式到方程3.2  解一元一次方程(一)合并同类项与移项3.3  解一元一次方程(二)去括号与去分母3.4  实际问题与一元一次方程第四章 图形认识初步4.1  多姿多彩的图形4.2  直线、射线、线段4.3  角4.4 设计制作长方体形状的包装纸盒七年级下册第五章 相交线与平行线5.1  相交线(垂线|同位角|内错角|同旁内角)5.2  平行线及其判定(邻补角)5.3  平行线的性质(命题|定理)5.4  平移第六章 平面直角坐标系6.1  平面直角坐标系6.2  坐标方法的简单应用第七章 三角形7.1  三角形有关的线段(高|中线|角平分线)7.2 与三角形有关的角(稳定性|外角)7.3  多边形及其内角和7.4 课题学习 镶嵌第八章 二元一次方程组8.1  二元一次方程组8.2  消元——二元一次方程组的解法8.3  实际问题与二元一次方程组*8.4  三元一次方程组解法举例第九章 不等式与不等式组9.1  不等式9.2  实际问题与一元一次不等式9.3  一元一次不等式组第十章 数据的收集、整理与描述10.1  统计调查10.2  直方图八年级上册第十一章 全等三角形11.1  全等三角形11.2  三角形全等的判定11.3  角的平分线的性质第十二章 轴对称12.1  轴对称12.2  作轴对称图形12.3  等腰三角形第十三章 实数13.1  平方根13.2  立方根13.3  实数第十四章 一次函数14.1  变量与函数14.2  一次函数14.3  用函数观点看方程(组)与不等式第十五章 整式的乘除与因式分解15.1  整式的乘法15.2  乘法公式15.3  整式的除法八年级下册第十六章 分式16.1  分式16.2  分式的运算16.3  分式方程第十七章 反比例函数17.1  反比例函数17.2  实际问题与反比例函数第十八章 勾股定理18.1  勾股定理18.2  勾股定理的逆定理第十九章 四边形19.1  平行四边形(性质|判定|中位线定理)19.2  特殊的平行四边形(矩形|菱形|正方形)19.3  梯形19.4  课题学习 重心第二十章 数据的分析20.1 数据的代表20.2 数据的波动九年级上册第二十一章 二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减第二十二章 一元二次方程22.1 一元二次方程22.2 降次——解一元二次方程22.3 实际问题与一元二次方程第二十三章 旋转23.1 图形的旋转23.2 中心对称第二十四章 圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第二十五章 概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率九年级下册第二十六章 二次函数26.1 二次函数及其图像26.2 用函数观点看一元二次方程26.3 实际问题与二次函数第二十七章 相似27.1 图形的相似27.2 相似三角形27.3 位似第二十八章 锐角三角函数28.1 锐角三角函数28.2 解直角三角形第二十九章 投影与视图29.1 投影29.2 三视图 初中数学中考,考哪些内容? 数与代数,空间与图形,统计与概率,综合与应用. 初中数学总内容有哪些? 初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,一般代数略大于几何代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,这几年圆在中考中考察的比重越来越小,难度也比以前简单了很多。

初中数学知识点总结及公式大全

升入初中后学习任务日渐繁重,该如何学习数学,数学知识点有哪些呢。以下是由我为大家整理的“初中数学知识点及公式大全”,仅供参考,欢迎大家阅读。   初中数学知识点及公式大全 1、一元一次方程根的情况 △=b2-4ac 当△>0时,一元二次方程有2个不相等的实数根; 当△=0时,一元二次方程有2个相同的实数根; 当△ 2、平行四边形的性质: ①两组对边分别平行的四边形叫做平行四边形。 ②平行四边形不相邻的两个顶点连成的线段叫他的对角线。 ③平行四边形的对边/对角相等。 ④平行四边形的对角线互相平分。 菱形:①一组邻边相等的平行四边形是菱形 ②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。 ③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。 矩形与正方形: ①有一个内角是直角的平行四边形叫做矩形。 ②矩形的对角线相等,四个角都是直角。 ③对角线相等的平行四边形是矩形。 ④正方形具有平行四边形,矩形,菱形的一切性质。 ⑤一组邻边相等的矩形是正方形。 多边形: ①N边形的内角和等于(N-2)180度 ②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。 二、基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理 三角形两边的和大于第三边 16、推论 三角形两边的差小于第三边 17、三角形内角和定理 三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等 24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS) 有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等 28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论 2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48、定理 四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理 n边形的内角的和等于(n-2)×180° 51、推论 任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等 54、推论 夹在两条平行线间的平行线段相等 55、平行四边形性质定理3 平行四边形的对角线互相平分 56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形 58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60、矩形性质定理1 矩形的四个角都是直角 61、矩形性质定理2 矩形的对角线相等 62、矩形判定定理1 有三个角是直角的四边形是矩形 63、矩形判定定理2 对角线相等的平行四边形是矩形 64、菱形性质定理1 菱形的四条边都相等 65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积=对角线乘积的一半,即S=(a×b)÷2 67、菱形判定定理1 四边都相等的四边形是菱形 68、菱形判定定理2 对角线互相垂直的平行四边形是菱形 69、正方形性质定理1 正方形的四个角都是直角,四条边都相等 70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71、定理1 关于中心对称的两个图形是全等的 72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等 76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形 77、对角线相等的梯形是等腰梯形 78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h 83、(1)比例的基本性质: 如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d 84、(2)合比性质: 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85、(3)等比性质: 如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b 86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例 90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94、判定定理3 三边对应成比例,两三角形相似(SSS) 95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97、性质定理2 相似三角形周长的比等于相似比 98、性质定理3 相似三角形面积的比等于相似比的平方 99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101、圆是定点的距离等于定长的点的集合 102、圆的内部可以看作是圆心的距离小于半径的点的集合 103、圆的外部可以看作是圆心的距离大于半径的点的集合 104、同圆或等圆的半径相等 105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线 107、到已知角的两边距离相等的点的轨迹,是这个角的平分线 108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109、定理 不在同一直线上的三点确定一个圆。 110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112、推论2 圆的两条平行弦所夹的弧相等 113、圆是以圆心为对称中心的中心对称图形 114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116、定理 一条弧所对的圆周角等于它所对的圆心角的一半 117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121、①直线L和⊙O相交 d﹤r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d﹥r 122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123、切线的性质定理 圆的切线垂直于经过切点的半径 124、推论1 经过圆心且垂直于切线的直线必经过切点 125、推论2 经过切点且垂直于切线的直线必经过圆心 126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角 127、圆的外切四边形的两组对边的和相等 128、弦切角定理 弦切角等于它所夹的弧对的圆周角 129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等 134、如果两个圆相切,那么切点一定在连心线上 135、①两圆外离 d﹥R+r ②两圆外切 d=R+r ③两圆相交 R-r﹤d﹤R+r(R﹥r) ④两圆内切 d=R-r(R﹥r) ⑤两圆内含 d﹤R-r(R﹥r) 136、定理 相交两圆的连心线垂直平分两圆的公共弦。 137、定理 把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形。 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。 138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。 139、正n边形的每个内角都等于(n-2)×180°/n。 140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。 141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长。 142、正三角形面积√3a/4 a表示边长。 143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。 144、弧长计算公式:L=n兀R/180。 145、扇形面积公式:S扇形=n兀R^2/360=LR/2。 146、内公切线长= d-(R-r) 外公切线长= d-(R+r)。    拓展阅读:初中数学常用公式 常用数学公式 公式分类 公式表达式 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB

初中数学初一上册知识点总结

初一数学是初中数学的基础,这篇文章我给大家总结归纳了初一上册数学课本的重要知识点,供同学们参考。 有理数 (1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。 (2)数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。 (3)相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。 (4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 (5)有理数的加减法 同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。 (6)有理数的乘法 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积为0.例:0×1=0 (7)有理数的除法 除以一个不为0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除 以任何一个不为0的数,都得0。 (8)有理数的乘方 求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n叫做指数。当a看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。 一元一次方程 (1)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。 (2)一元一次方程 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。 (3)等式的性质 ①等式两边同时加上(或减去)同一个整式,等式仍然成立。 若a=b 那么a+c=b+c ②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。 若a=b 那么有a·c=b·c或a÷c=b÷c(c≠0) ③等式具有传递性。 若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an (3)解方程式的步骤 解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。 ①去分母:把系数化成整数。 ②去括号 ③移项:把等式一边的某项变号后移到另一边。 ④合并同类项 ⑤系数化为1。 角的知识点 1.角:角是由两条有公共端点的射线组成的几何对象。 2.角的度量单位:度、分、秒 3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点 4.角的比较: (1)角可以看成是由一条射线绕着他的端点旋转而成的。 (2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。 (3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 5.余角和补角: (1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。 性质:等角的余角相等。 (2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。 性质:等角的补角相等。

初中数学抛物线知识点总结

抛物线所有公式总结是如下:

一般式:ax+bx+c(a、b、c为常数,a≠0)。

顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)。

交点式(两根式):y=a(x-x1)(x-x2)(a≠0)。

其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。抛物线标准方程:

右开口抛物线:y^2=2px。

左开口抛物线:y^2= -2px。

上开口抛物线:x^2=2py y=ax^2(a大于等于0)。

下开口抛物线:x^2= -2py y=ax^2(a小于等于0)。

[p为焦准距(p>0)]。

初中数学知识点总结

很多同学在复习初中数学时,因为没有对之前的知识进行梳理记忆,导致整体的复习效率不高。下面是由我为大家整理的“初中数学知识点总结归纳(完整版)”,仅供参考,欢迎大家阅读本文。 初中数学知识点总结归纳 1、菱形的定义 :有一组邻边相等的平行四边形叫做菱形。 2、菱形的性质:⑴ 矩形具有平行四边形的一切性质; ⑵ 菱形的四条边都相等; ⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 ⑷ 菱形是轴对称图形。 提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。 3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。 4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c) 5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 6、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。 7、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。 8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。 9、中被开方数的取值范围:被开方数a≥0 10、平方根性质:①一个正数的平方根有两个,它们互为相反数。②0的平方根是它本身0。③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。 11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。 12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是0 13、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。 14、求正数a的算术平方根的方法; 完全平方数类型:①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。 求正数a的算术平方根,只需找出平方后等于a的正数。 初中数学重点知识归纳 1、一元二次方程解法: (1)配方法:(X±a)=b(b≥0)注:二次项系数必须化为1 (2)公式法:aX+bX+C=0(a≠0)确定a,b,c的值,计算b-4ac≥0 若b-4ac>0则有两个不相等的实根,若b-4ac=0则有两个相等的实根,若b-4ac<0则无解 若b-4ac≥0则用公式X=-b±√b-4ac/2a注:必须化为一般形式 (3)分解因式法 ①提公因式法:ma+mb=0→m(a+b)=0 平方差公式:a-b=0→(a+b)(a-b)=0 ②运用公式法: 完全平方公式:a±2ab+b=0→(a±b)=0 ③十字相乘法 2、锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin):对边比斜边,即sinA=a/c; 余弦(cos):邻边比斜边,即cosA=b/c; 正切(tan):对边比邻边,即tanA=a/b; 余切(cot):邻边比对边,即cotA=b/a; 3、积的关系 sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 4、倒数关系 tanα·cotα=1 sinα·cscα=1 cosα·secα=1 5、两角和差公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

初中数学知识点总结及公式大全(初中数学知识点总结大纲)的问题分享结束啦,以上的文章解决了您的问题吗?欢迎您下次再来哦!