hello大家好,今天小编来为大家解答以下的问题,初一的数学有理数,初一有理数混合运算计算题及答案,很多人还不知道,现在让我们一起来看看吧!

初一的数学学习主要涉及到有理数的概念和混合运算的计算题。有理数是整数和分数的统称,它们包括正数、负数和零。初一学生需要了解有理数的性质和运算规律,并能够熟练地进行混合运算。

初一的数学有理数,初一有理数混合运算计算题及答案

有理数的混合运算包括加法、减法、乘法和除法。下面是几个初一的有理数混合运算计算题及其答案。

1. 计算:-3 + 5 - 2 - (-4)

答案:-3 + 5 - 2 - (-4) = -3 + 5 - 2 + 4 = 4

2. 计算:-2 × 3 - 4 ÷ (-2)

答案:-2 × 3 - 4 ÷ (-2) = -6 - (-2) = -6 + 2 = -4

3. 计算:(-5 + 2) × (-3) ÷ (-2)

答案:(-5 + 2) × (-3) ÷ (-2) = -3 × (-3) ÷ (-2) = 9 ÷ (-2) = -4.5

4. 计算:4.8 - 2.5 + (-1.2) ÷ (-0.3)

答案:4.8 - 2.5 + (-1.2) ÷ (-0.3) = 4.8 - 2.5 + 4 = 6.3

通过以上的计算题,我们可以看到初一的有理数混合运算需要注意以下几点:

减法的运算可以转换为加法的运算,即a - b = a + (-b)。通过转换,我们可以简化计算过程。

乘法和除法的运算规律需要记住。正数乘以正数得到正数,负数乘以正数得到负数,负数乘以负数得到正数。除法同样遵循这个规律。

计算时需要注意小数和整数的混合运算。可以先计算整数部分,再计算小数部分,最后合并结果。

初一的数学学习对数学思维的培养非常重要。通过学习有理数的概念和混合运算的计算题,学生可以提高他们的数学能力和解决问题的能力。希望同学们在学习数学的过程中能够充分理解数学的规律和方法,并能够灵活运用于实际问题的解决中。

初一的数学有理数,初一有理数混合运算计算题及答案

在有括号的算式里,要先算( 小 括号 )里面的,再算( 中括号 )里面的,最后算括号外面的。

1、四则混合运算顺序:同级运算时,从左到右依次计算;两级运算时,先算乘除,后算加减。

有括号时,先算括号里面的,再算括号外面的;有多层括号时,先算小括号里的,再算中括号里面的,再算大括号里面的,最后算括号外面的。

2、乘法是加法的简便运算,除法是减法的简便运算。减法与加法互为逆运算,除法与乘法互为逆运算。

几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。

一个数减去两个数的和,等于从这个数中依次减去和里的每一个加数。四则运算的运算顺序:

1、如果只有加和减或者只有乘和除,从左往右计算。

2、如果一级运算和二级运算,同时有,先算二级运算。

3、如果一级,二级,三级运算(即乘方、开方和对数运算)同时有,先算三级运算再算其他两级。

4、如果有括号,要先算括号里的数(不管它是什么级的,都要先算)。

5、在括号里面,也要先算三级,然后到二级、一级。

初一有理数概念总结

初一的有理数是重点也是难点,那么同学们应该如何把握好这个知识点呢?以下是我分享给大家的初一数学有理数的要点,希望可以帮到你!初一数学有理数的要点 一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。基础知识:1、正数(positionnumber):大于0的数叫做正数。2、负数(negationnumber):在正数前面加上负号"-"的数叫做负数。3、0既不是正数也不是负数。4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。表达式:(a+b)+c=a+(b+c)9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)10、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0.乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。表达式:a(b+c)=ab+ac11、倒数1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。14、有理数的混合运算顺序(1)"先乘方,再乘除,最后加减"的顺序进行;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即016、近似数(approximatenumber):17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。拓展知识:1、数集:把一些数放在一起,就组成一个数的集合,简称数集。(1)所有有理数组成的数集叫做有理数集;(2)所有的整数组成的数集叫做整数集。2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。4、比较两个有理数大小的方法有:(1)根据有理数在数轴上对应的点的位置直接比较;(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的数学思想;(3)做差法:a-b>0——a>b;(4)做商法:a/b>1,b>0——a>b.初一数学有理数必考要点 (一)正负数1.正数:大于0的数。2.负数:小于0的数。3.0即不是正数也不是负数。4.正数大于0,负数小于0,正数大于负数。(二)有理数1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)2.整数:正整数、0、负整数,统称整数。3.分数:正分数、负分数。(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)2.数轴的三要素:原点、正方向、单位长度。3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。(四)有理数的加减法1.先定符号,再算绝对值。2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a-b=a+(-b)减去一个数,等于加这个数的相反数。(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。2.乘积是1的两个数互为倒数。3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。2.除以一个不等于0的数,等于乘这个数的倒数。3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。4.同底数幂相除,底不变,指数相减。(八)有理数的加减乘除混合运算法则1.先乘方,再乘除,最后加减。2.同级运算,从左到右进行。3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。(九)科学记数法、近似数、有效数字。第二章整式(一)整式1.整式:单项式和多项式的统称叫整式。2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。3.系数;一个单项式中,数字因数叫做这个单项式的系数。4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。5.多项式:几个单项式的和叫做多项式。6.项:组成多项式的每个单项式叫做多项式的项。7.常数项:不含字母的项叫做常数项。8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变整理了知识点,我们来看看相关的练习题吧。根据做题的情况分析有哪些知识点是自己还没有掌握的。1,从数轴上看,0是()A,最小整数B,最大的负数C,最小的有理数D最小的非负数2,一个数的相反数小于它本身,这个数是()A,非负数B,正数C,0D,负数3,冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是()A,-10℃,-7℃,1℃B,-7℃,-10℃,1℃C,1℃,-7℃,-10℃D,1℃,-10℃,-7℃4,下列说法正确的有()A,正数和负数统称为有理数B,有理数是指整数、分数、正有理数、负有理数和0五类C,一个有理数不是整数就是分数D,整数包括正整数和负整数5,若a、b为有理数,a>0,bb。C,若将数a、b在数轴上表示出来,则数a与原点的距离比较b与原点的距离小。D,在数轴上,表示a,|a|,b的点从左到右依次为a,b,|a|6,在下列代数式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3中,多项式有()A.2个B.3个C.4个D5个A、-3x2B、(5a-4b)/7C、(3a+2)/5xD、-2005初一数学上册重点知识点 实数:—有理数与无理数统称为实数。有理数:整数和分数统称为有理数。无理数:无理数是指无限不循环小数。自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。数轴:规定了圆点、正方向和单位长度的直线叫做数轴。相反数:符号不同的两个数互为相反数。倒数:乘积是1的两个数互为倒数。绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。数学定理公式有理数的运算法则⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。⑵减法法则:减去一个数,等于加上这个数的相反数。⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。数学第一章相交线一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。猜你喜欢:1. 初中数学知识点全总结 2. 最新七年级数学上册知识点总结 3. 初一数学基本知识点总结 4. 初一数学期末复习题有哪些 5. 初一数学重要知识点总结

初一有理数混合运算计算题及答案

1、多项式-abx2+ x3- ab+3中,第一项的系数是 ,次数是 。2、计算:①100×103×104 = ;②-2a3b4÷12a3b2 = 。3、(8xy2-6x2y)÷(-2x)= 4、一个正方体的棱长为2×102毫米,则它的体积是 毫米3。

5、(a+2b-3c)(a-2b+3c)=[a+ ( )]·[a-( )] 。

6、(-3x-4y) ·( ) = 9x2-16y2。

7、已知正方形的边长为a,如果它的边长增加4,那么它的面积增加 。

8、如果x+y=6, xy=7, 那么x2+y2= , (x-y)2= 。

三、计算题(每小题5分,共30分)

15、2(x3)2·x3-(2 x3)3+(-5x)2·x716、(-2a3b2c) 3÷(4a2b3)2- a4c·(-2ac2)17、-2a2( ab+b2)-5a(a2b-ab2)18、(3x3-2)(x+4)-(x2-3)(3x-5)19、9(x+2)(x-2)-(3x-2)220、[(x+y)2-(x-y2)+4xy] ÷(-2x)四、先化简,再求值(每小题7分,共14分)

21、(3a-7)(3a+7)-2a( -1) , 其中a=-322、[(3x- y 2)+3y(x- )] ÷[(2x+y)2-4y(x+ y)] ,其中x=-7.8, y=8 检举

回答人的补充 2009-08-17 09:12 (1).(x-1)-(2x+1)=-x-2(2).3(x-2)+2(1-2x)=-x-4(3).3(2b-3a)+3(2a-3b)=-3a-3b

(

4).(3x^2-xy-2y^2)-2(X^2+xy-2y^2)=(3x-y)(x+2y)-(x+2y)(x-y)=3y(x+2y)(5)7a^b-(-4a^b+5ab^2)-2(2a^2b-3ab^2)=7a^b+4a^b-5ab^-4a^b+6ab^=-a^b+ab^=ab(b-a) 100×103×104 = ;②-2a3b4÷12a3b2 =

、(8xy2-6x2y)÷(-2x)=

、(a+2b-3c)(a-2b+3c)=[a+ ( )]·[a-( )]

、(-3x-4y) ·( ) = 9x2-16y2。、(a+2b-3c)(a-2b+3c)=[a+ ( )]·[a-( )]

2(x3)2·x3-(2 x3)3+(-5x)2·x7

1.(2a+3b)*(2a-b)

2.(2x+y-1)的平方 解1.(2a+3b)*(2a-b) 用十字相乘法 吧 2 2 =4a2-3b2+4ab 3 -1

2.(2x+y-1)的平方 =4x2+y2+4xy +1-4x-2y (3) 2(ab-3)(4)-3(ab2c+2bc-c) (5)(―2a3b) (―6ab6c) (6) (2xy2) 3yx (1)2ab(5ab2+3a2b) (2) 三、巩固练习: 1、判断题: (1) 3a3·5a3=15a3 ( ) (2) ( ) (3) ( ) (3) -x2(2y2-xy)=-2xy2-x3y ( ) 2、计算题:

(3) (4) -3x(-y-xyz) (5) 3x2(-y-xy2+x2) (6) 2ab(a2b- c) (7) (a+b2+c3)·(-2a) (8) [-(a2)3+(ab)2+3]·(ab3)

初一数学计算题100道

1.25×(8+10)

=1.25×8+1.25×10

=10+12.5=22.5

9123-(123+8.8)

=9123-123-8.8

=9000-8.8

=8991.2

1.24×8.3+8.3×1.76

=8.3×(1.24+1.76)

=8.3×3=24.9

9999×1001

=9999×(1000+1)

=9999×1000+9999×1

=10008999

14.8×6.3-6.3×6.5+8.3×3.7

=(14.8-6.5)×6.3+8.3×3.7

=8.3×6.3+8.3×3.7

8.3×(6.3+3.7)

=8.3×10

=83

1.24+0.78+8.76

=(1.24+8.76)+0.78

=10+0.78

=10.78

933-157-43

=933-(157+43)

=933-200

=733

4821-998

=4821-1000+2

=3823

I32×125×25

=4×8×125×25

=(4×25)×(8×125)

=100×1000

=100000

9048÷268

=(2600+2600+2600+1248)÷26

=2600÷26+2600÷26+2600÷26+1248÷269

=100+100+100+48

=348

2881÷ 43

=(1290+1591)÷ 434

=1290÷43+1591÷43

=30+37

3.2×42.3×3.75-12.5×0.423×16

=3.2×42.3×3.75-1.25×42.3×1.6

=42.3×(3.2×3.75-1.25×1.6)

=42.3×(4×0.8×3.75-1.25×4×0.4)

=42.3×(4×0.4×2×3.75-1.25×4×0.4)

=42.3×(4x0.4x7.5-1.25x4x0.4)

=42.3×[4×0.4×(7.5-1.25)]

=42.3×[4×0.4×6.25]

=42.3×(4×2.5)

=4237

1.8+18÷1.5-0.5×0.3

=1.8+12-0.15

=13.8-0.15

=13.65

6.5×8+3.5×8-47

=52+28-47

=80-47

(80-9.8)×5分之2-1.32

=70.2X2/5-1.32

=28.08-1.32

=26.76

8×7分之4÷[1÷(3.2-2.95)]

=8×4/7÷[1÷0.25]

=8×4/7÷4

=8/7

2700×(506-499)÷900

=2700×7÷900

=18900÷900

=21

33.02-(148.4-90.85)÷2.5

=33.02-57.55÷2.5

=33.02-23.02

=10

(1÷1-1)÷5.1

=(1-1)÷5.1

=0÷5.1

=0

18.1+(3-0.299÷0.23)×1

=18.1+1.7×1

=18.1+1.7

=19.8

[-18]+29+[-52]+60= 19

[-3]+[-2]+[-1]+0+1+2= -3

[-301]+125+301+[-75]= 50

[-1]+[-1/2]+3/4+[-1/4]= -1

[-7/2]+5/6+[-0.5]+4/5+19/6= 1.25

[-26.54]+[-6.14]+18.54+6.14= -8

1.125+[-17/5]+[-1/8]+[-0.6]= -3

[-98+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)

5+21*8/2-6-59

68/21-8-11*8+61

-2/9-7/9-56

4.6-(-3/4+1.6-4-3/4)

1/2+3+5/6-7/12

[2/3-4-1/4*(-0.4)]/1/3+2

22+(-4)+(-2)+4*3

-2*8-8*1/2+8/1/8

(2/3+1/2)/(-1/12)*(-12)

(-28)/(-6+4)+(-1)

2/(-2)+0/7-(-8)*(-2)

(1/4-5/6+1/3+2/3)/1/2

18-6/(-3)*(-2)

(5+3/8*8/30/(-2)-3

(-84)/2*(-3)/(-6)

1/2*(-4/15)/2/3

-3x+2y-5x-7y

1437×27+27×563 〔75-(12+18)〕÷15

2160÷〔(83-79)×18〕 280+840÷24×5

325÷13×(266-250) 85×(95-1440÷24)

58870÷(105+20×2) 1437×27+27×563

81432÷(13×52+78) [37.85-(7.85+6.4)] ×30

156×[(17.7-7.2)÷3] (947-599)+76×64

36×(913-276÷23) [192-(54+38)]×67

[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)

5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2]

(136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5

0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)

812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6

85+14×(14+208÷26) 120-36×4÷18+35

(284+16)×(512-8208÷18) 9.72×1.6-18.305÷7

4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10

12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6

85+14×(14+208÷26) (58+37)÷(64-9×5)

(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)

0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6

120-36×4÷18+35 10.15-10.75×0.4-5.7

5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52

32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)

[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6

5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6

3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6

5.8×(3.87-0.13)+4.2×3.74

33.02-(148.4-90.85)÷2.5

1)23+(-73)

(2)(-84)+(-49)

(3)7+(-2.04)

(4)4.23+(-7.57)

(5)(-7/3)+(-7/6)

(6)9/4+(-3/2)

(7)3.75+(2.25)+5/4

(8)-3.75+(+5/4)+(-1.5)

(9)(-17/4)+(-10/3)+(+13/3)+(11/3)

(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)

(11)(+1.3)-(+17/7)

(12)(-2)-(+2/3)

(13)|(-7.2)-(-6.3)+(1.1)|

(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)

(15)(-2/199)*(-7/6-3/2+8/3)

(16)4a)*(-3b)*(5c)*1/6

1. 3/7 × 49/9 - 4/3

2. 8/9 × 15/36 + 1/27

3. 12× 5/6 – 2/9 ×3

4. 8× 5/4 + 1/4

5. 6÷ 3/8 – 3/8 ÷6

6. 4/7 × 5/9 + 3/7 × 5/9

7. 5/2 -( 3/2 + 4/5 )

8. 7/8 + ( 1/8 + 1/9 )

9. 9 × 5/6 + 5/6

10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14

12. 6 ×( 1/2 + 2/3 )

13. 8 × 4/5 + 8 × 11/5

14. 31 × 5/6 – 5/6

15. 9/7 - ( 2/7 – 10/21 )

16. 5/9 × 18 – 14 × 2/7

17. 4/5 × 25/16 + 2/3 × 3/4

18. 14 × 8/7 – 5/6 × 12/15

19. 17/32 – 3/4 × 9/24

20. 3 × 2/9 + 1/3

21. 5/7 × 3/25 + 3/7

22. 3/14 ×× 2/3 + 1/6

23. 1/5 × 2/3 + 5/6

24. 9/22 + 1/11 ÷ 1/2

25. 5/3 × 11/5 + 4/3

26. 45 × 2/3 + 1/3 × 15

27. 7/19 + 12/19 × 5/6

28. 1/4 + 3/4 ÷ 2/3

29. 8/7 × 21/16 + 1/2

30. 101 × 1/5 – 1/5 × 21

31.50+160÷40 (58+370)÷(64-45)

32.120-144÷18+35

33.347+45×2-4160÷52

34(58+37)÷(64-9×5)

35.95÷(64-45)

36.178-145÷5×6+42 420+580-64×21÷28

37.812-700÷(9+31×11) (136+64)×(65-345÷23)

38.85+14×(14+208÷26)

39.(284+16)×(512-8208÷18)

40.120-36×4÷18+35

41.(58+37)÷(64-9×5)

42.(6.8-6.8×0.55)÷8.5

43.0.12× 4.8÷0.12×4.8

44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6

45.6-1.6÷4= 5.38+7.85-5.37=

46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

48.10.15-10.75×0.4-5.7

49.5.8×(3.87-0.13)+4.2×3.74

50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50

52.-7*2-57/(3

53.(-7)*2/(1/3)+79/(3+6/4)

54.123+456+789+98/(-4)

55.369/33-(-54-31/15.5)

56.39+{3x[42/2x(3x8)]}

57.9x8x7/5x(4+6)

58.11x22/(4+12/2)

59.94+(-60)/10

1.

a^3-2b^3+ab(2a-b)

=a^3+2a^2b-2b^3-ab^2

=a^2(a+2b)-b^2(2b+a)

=(a+2b)(a^2-b^2)

=(a+2b)(a+b)(a-b)

2.

(x^2+y^2)^2-4y(x^2+y^2)+4y^2

=(x^2+y^2-2y)^2

3.

(x^2+2x)^2+3(x^2+2x)+x^2+2x+3

=(x^2+2x)^2+4(x^2+2x)+3

=(x^2+2x+3)(x^2+2x+1)

=(x^2+2x+3)(x+1)^2

4.

(a+1)(a+2)+(2a+1)(a-2)-12

=a^2+3a+2+2a^2-3a-2-12

=3a^2-12

=3(a+2)(a-2)

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

1. 3/7 × 49/9 - 4/3

2. 8/9 × 15/36 + 1/27

3. 12× 5/6 – 2/9 ×3

4. 8× 5/4 + 1/4

5. 6÷ 3/8 – 3/8 ÷6

6. 4/7 × 5/9 + 3/7 × 5/9

7. 5/2 -( 3/2 + 4/5 )

8. 7/8 + ( 1/8 + 1/9 )

9. 9 × 5/6 + 5/6

10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14

12. 6 ×( 1/2 + 2/3 )

13. 8 × 4/5 + 8 × 11/5

14. 31 × 5/6 – 5/6

15. 9/7 - ( 2/7 – 10/21 )

16. 5/9 × 18 – 14 × 2/7

17. 4/5 × 25/16 + 2/3 × 3/4

18. 14 × 8/7 – 5/6 × 12/15

19. 17/32 – 3/4 × 9/24

20. 3 × 2/9 + 1/3

21. 5/7 × 3/25 + 3/7

22. 3/14 ×× 2/3 + 1/6

23. 1/5 × 2/3 + 5/6

24. 9/22 + 1/11 ÷ 1/2

25. 5/3 × 11/5 + 4/3

26. 45 × 2/3 + 1/3 × 15

27. 7/19 + 12/19 × 5/6

28. 1/4 + 3/4 ÷ 2/3

29. 8/7 × 21/16 + 1/2

30. 101 × 1/5 – 1/5 × 21

31.50+160÷40 (58+370)÷(64-45)

32.120-144÷18+35

33.347+45×2-4160÷52

34(58+37)÷(64-9×5)

35.95÷(64-45)

36.178-145÷5×6+42 420+580-64×21÷28

37.812-700÷(9+31×11) (136+64)×(65-345÷23)

38.85+14×(14+208÷26)

39.(284+16)×(512-8208÷18)

40.120-36×4÷18+35

41.(58+37)÷(64-9×5)

42.(6.8-6.8×0.55)÷8.5

43.0.12× 4.8÷0.12×4.8

44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6

45.6-1.6÷4= 5.38+7.85-5.37=

46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

48.10.15-10.75×0.4-5.7

49.5.8×(3.87-0.13)+4.2×3.74

50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50

52.-7*2-57/(3

53.(-7)*2/(1/3)+79/(3+6/4)

54.123+456+789+98/(-4)

55.369/33-(-54-31/15.5)

56.39+{3x[42/2x(3x8)]}

57.9x8x7/5x(4+6)

58.11x22/(4+12/2)

59.94+(-60)/10

1.

a^3-2b^3+ab(2a-b)

=a^3+2a^2b-2b^3-ab^2

=a^2(a+2b)-b^2(2b+a)

=(a+2b)(a^2-b^2)

=(a+2b)(a+b)(a-b)

2.

(x^2+y^2)^2-4y(x^2+y^2)+4y^2

=(x^2+y^2-2y)^2

3.

(x^2+2x)^2+3(x^2+2x)+x^2+2x+3

=(x^2+2x)^2+4(x^2+2x)+3

=(x^2+2x+3)(x^2+2x+1)

=(x^2+2x+3)(x+1)^2

4.

(a+1)(a+2)+(2a+1)(a-2)-12

=a^2+3a+2+2a^2-3a-2-12

=3a^2-12

=3(a+2)(a-2)

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

初一数学的有理数

有理数的公式:

①加法的交换律 a+b=b+a。

②加法的结合律 a+(b+c)=(a+b)+c。

③存在数0,使 0+a=a+0=a。

④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0。

⑤乘法的交换律 ab=ba。

⑥乘法的结合律 a(bc)=(ab)c。

⑦分配律 a(b+c)=ab+ac。

⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a。

⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。有理数的认识

有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,有理数也可以定义为十进制循环小数。

今天的关于初一的数学有理数,初一有理数混合运算计算题及答案的知识介绍就讲到这里,如果你还想了解更多这方面的信息,记得收藏关注本站。