各位老铁们,大家好,今天小编来为大家分享高中数学知识点函数与导数知识点 高中导数知识点相关知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!

高中数学知识点:函数与导数

高中数学知识点函数与导数知识点 高中导数知识点

在高中数学中,函数与导数是一门重要的知识点。函数是数学中最常见的概念之一,它描述了一种输入和输出之间的关系。导数则是函数的变化率,用于描述函数在不同点上的斜率。

函数的基本定义是,对于给定的输入值,存在唯一的输出值。我们通常用f(x)表示函数,其中x是输入变量,f(x)是对应的输出值。函数有多种形式,如线性函数、二次函数、指数函数等。我们可以通过函数的图像、表达式或者函数关系来描述函数。

导数是函数的一个重要属性,它描述了函数在某一点的变化率。导数可以通过函数的图像来直观理解,它表示函数在某一点上的斜率。导数的定义有多种形式,如函数的微商、差商等。我们通常用f\'(x)或者dy/dx来表示函数f(x)的导数。

导数有多种应用,包括求函数的极值点、判断函数的增减性、求函数的图像等。通过求导数,我们可以获得函数在不同点上的变化情况。导数还可以用于解决实际问题,比如物体的运动问题、求曲线的切线等。

在学习函数与导数时,我们需要掌握一些基本的知识和技巧。这包括函数的基本性质、导数的基本定义和性质、求导的基本规则等。我们还要学会运用这些知识和技巧解决具体问题,包括函数的极值问题、函数的增减性问题、函数的图像问题等。

函数与导数是高中数学中的重要知识点,它们在数学和科学的研究中有广泛的应用。通过学习函数与导数,我们可以更好地理解和描述数学与自然界中的变化规律。函数与导数也是我们进一步学习微积分和应用数学的基础。掌握函数与导数的知识是高中数学学习的重要内容之一。

高中数学知识点函数与导数知识点 高中导数知识点

市重点高中任职十余年之久的数学教师告诉你,高中数学里面导数肯定更难,为何我会得出这个结论呢?首先第一个我们从圆锥曲线与导数常考题型来分析。

参加过高考的人应该都知道。高考题这些顺序都是按照从易到难的顺序出题的。从近几年的全国卷,命题顺序来看,导数始终放在圆锥曲线的后面。

又或者说导数经常是放在最后一题,也就是我们常说的压轴题。

这类题目的出现它必然取一个选拔决定性的作用,也就是真正“学霸”与“中等生”的分界点。问题背景

真正在高考当中导数能得到满分的同学,那么正常试卷我相信他的数学成绩自然不会差,至少在140以上。

除了粗心大意,我觉得没有理由,他做出来的题目会被扣分。一:圆锥曲线知识点及其对应题型:

这这个地方我讲述一点,就是圆锥曲线里面一个定值问题都分为8类(篇幅有限,我只是选取解析几何里面有个重要的知识点来做出具体的总结):

1:角为定值;2:斜率定值(倾斜角为定值);3:线段长度为定值;4:面积定值;5:数量积为定值;6:直线方程定值;7:斜率积定值(椭圆一组的性质);8:运算关系为定值。

其实解析几何的问题做多了能够得到每一种问题的具体解题方法。

我们就圆锥曲线面积定制来做出解释吧:只要算出点到直线的距离其实也就是它的高以及底边的长,那么用代数式来表示就能够得到题目说要我们找的关系,问题能够解决。二:导数题知识点及其对应题型:

导数基本知识点我们就不分析,相信大家都有所了解。但是导数也就是高中数学与大学数学的一个过渡点, 在大学数学内容里与高中联系最新的也就是倒数有关概念及其知识点。

相比于圆锥曲线这个就显得重要的多。

到时候问题是比较抽象的,提醒也是比较复杂的,常考的内容就是一个“零点的存在性定理”以及一个“隐零点”的问题。

很多的学生他导数学完,竟然连二阶求导的意义何在都弄不清楚,这是大部分人所反映的问题,但是一个基本的把角求导却是90%导数题目里面都必须要用到的。

以及我们作为老师来讲,做过无数张各省市的调研卷以及联考试卷,但是对于宝树这一张却无法得出一个非常具体机型的详细总结以及解决办法。

泰勒公式、洛必达法则、对数不等式……这些内容其实是在大学数学里面才有的。但是呢高中数学到处很多导数压轴题几乎都要用到,才能够更好更完整的去解题。

另一方面就是导数它可以与高中数学任意一章的知识点内容组合来命题。探究

可见导数是贯穿整个高中数学一条重要线索,当然对于高中数学的导数书上面有没有做过多余的解释,因为对应的知识点对应的题型实在太多,我们也只能泛泛而谈,不能够逐一的罗列清楚。

从上述分析不难看出,导数更为抽象更难理解。

导数内容属于函数的一个分支点函数本身就属于抽象化,就拿一个简单的零点离散与集中来说,研究这类问题,你一定要通过图像去分析。

函数问题首先要看其对应的定义域(也就是x的取值范围),若是这个图像在某一个区域内,比如说一到五之间,它的图像斜率都是零的话,那么这个函数零点集中。

一个函数不只对应一个零点,他有可能对应多个,但是多个零点不在一起的话,那么他就属于零点分散,这个时候就不应该取“=”号。

想必看到这里的人都是对高中数学有一定的了解,那么你可以通过上述的分析。总结

至少在我去刚才讲。圆锥曲线的时候能够有所了解,但是一讲到这个零点的问题就比较抽象,难以理解。由此可见,导数更加的复杂。

圆锥曲线我可以给你做出具体的但是导数确实考题型太多。

不知道你对于这个问题有什么样的看法?本文纯属鄙人愚见,如有错误,欢迎指正,谢谢大家!

高中导数知识点

追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。那么接下来给大家分享一些关于高中导数知识点 总结 大全,希望对大家有所帮助。 目录 高中导数知识点总结 高中数学的学习方法 如何提升高中数学成绩 高中导数知识点总结 1、导数的定义:在点处的导数记作. 2.导数的几何物理意义:曲线在点处切线的斜率 ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。 3.常见函数的导数公式:①;②;③; ⑤;⑥;⑦;⑧。 4.导数的四则运算法则: 5.导数的应用: (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数; 注意:如果已知为减函数求字母取值范围,那么不等式恒成立。 (2)求极值的步骤: ①求导数; ②求方程的根; ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值; (3)求可导函数值与最小值的步骤: ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。 导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习 高二数学 导数的定义知识点归纳吧! 导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x?f(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f(x0),也记作y│x=x0或dy/dx│x=x0 一、求导数的 方法 (1)基本求导公式 (2)导数的四则运算 (3)复合函数的导数 设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即 二、关于极限 .1.数列的极限: 粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如: 2函数的极限: 当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作 三、导数的概念 1、在处的导数. 2、在的导数. 3.函数在点处的导数的几何意义: 函数在点处的导数是曲线在处的切线的斜率, 即k=,相应的切线方程是 注:函数的导函数在时的函数值,就是在处的导数。 例、若=2,则=()A-1B-2C1D 四、导数的综合运用 (一)曲线的切线 函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步: (1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为_。 高中数学函数与导数知识点总结分享: 函数与导数 第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。 第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。对于函数不同的单调递增(减)区间,千万不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。 第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。在用定义进行判断时,要注意自变量在定义域区间内的任意性。 第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。 第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)>> 高中数学的 学习方法 不要忽视课本。把高一高二的所有教学课本找出来,认认真真仔仔细细地把里面的知识点定理公理等等都看一遍,包括书上的证明也不要忽视。不是说看一遍就了事的,而是真正的去理解他。因为在你高一高二所有的月考,期中考,期末考,经历了这么多题海战术之后你要做的就是要回归课本。你会发现有些高考题,他是很巧妙的利用了书上一些简单的定义进行变换和引申得到的。所以当老师带着从头复习的时候,不要排斥,而是要回忆,消化,理解和掌握这些书本上的基础知识。 第二,要尝试着去掌握一些新的定理和法则。在高一高二的时候,老师可能会说这个公式不是大纲要求的,所以不必掌握。这是完全正确的,因为当时所有的知识都是新的,你在面对过多新知识的时候,很难消化和掌握。但是现在你已经掌握了很多知识的基础上,在去适当的结合自己的能力去了解一些考纲之外的,就更容易掌握了。比如洛必达法则,高中虽然不讲,但是在答大题的时候用起来很方便的一个法则。如果你掌握了,你就会比别人做的更好更快更准确。 第三,要注意数学思想和方法的总结。比如说画图的思想,转化的思想等等。这个操作起来还是比较容易的。就是在你每次做完题要注意看解析,看他是怎么分析试题的;老师讲课的时候是怎么讲解和归类的;甚至可以多问一下身边的同学是怎么做这道题的,来寻求一题多解,多思路,看有没有比你的方法更好的方法。良好的方法是成功的一半,掌握了正确的方法不仅省时更省力。 第四,计算能力的提高。讲真,我是没有这个毛病的。但是我身边的好多同学有这个问题,就是明明会做的题一定会算错。小题大题一张卷下来能扣出来10分。嘴上说着是粗心,但我认为不是。我觉得有两个原因,一个是知识掌握的不牢固,另一个是自身计算能力太差。这两点都是很致命的。计算能力的提高,会让正确率上升,会做的题会一次性做对。也会节省出很多时间,去做其他的题。所以从一轮复习开始就要学会提升自己的计算能力,这样到最后才不会后悔 >>> 如何提升高中数学成绩 1.数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,比较自己的解题思路与教师所讲有哪些不同。先把基础吃透了,公式的推导过程是万变的根基,首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 2.要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,这是必要的,中学的题开型就那么些类型,一定要熟练掌握各种类型,主攻错题。 3.应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。 高中数学与初中数学最大的区别是概念多并且较抽象,学起来和以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。 4.数学的学习一点都不比熟悉电脑游戏难,但也不必像小学生那样搞"题海战术",以"题海战术"这种方法只会使数学越学越糟。做过多的题会让人失去耐心,当做到真正重要的题目的时候反而容易混淆。当我们所学的概念在题目中出现时,那些与重要概念直接相关的题目就是重要的题目。 5.数学能力差,主要表现在对基本技能的理解、掌握和应用上.只有在巩固基础知识和掌握基本技能的前提下,才能进行综合能力的强化。学习数学一定要在基础上下功夫,在数学的学习上不少学生会犯一个错误,因为大多老师和各种数学方法上都说要大量做题,其实它有个前提条件,做题是在三律吃透的前提下才有作用。 6.多从举一反三上下功夫,上课能听懂,作业能完成,就是成绩提不高.这是高中生共同的“心声...由于课堂信息容量小,知识单一,在老师的指导下,学生一般都能听懂,课后的练习多是直接应用概念套用算法,过程简单且技能技巧要求较低,还有受速度和时间等方面的影响,不大注重课后的理解掌握和能力提高,只想着多做题。学习中要多分析基础类、综合类、方法类、变条件、变结论、变思想、变方法,并对其中具有代表性的问题进行详尽的剖析,做到触类旁通,这有利于提高高中生的学习数学成绩。 >>> 高中导数知识点总结大全相关 文章 : ★ 高中数学2-2知识点 ★ 高考数学知识点总结的资料 ★ 高二数学文科重点知识点总结 ★ 高中数学知识点总结归纳最新 ★ 2020高考数学知识点总结大全 ★ 人教版高中数学知识点总结最新 ★ 高中数学函数周期知识点总结 ★ 高中数学知识点总结 ★ 高三数学知识点考点总结大全 ★ 高一数学知识点汇总大全 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?a16caac520b9e58c9a9652b27953e5ae"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高中数学公式大全

24个基本求导公式如下:

1、C=0(C为常数)。

2、(xAn)=nxA(n——1)。

3、(sinx)=cosx。4、(cosx)=——sinx。

5、(Inx)=1/x。

6、(enx)=enx。

7、 (logaX)=1/(xlna)。

8、 (anx)=(anx)*ina。

9、(u±V)=u±V。

10、 (uv)=uv+uv。11、 (u/v)=(uv——uv)/v。

12、 f(g(x))=(f(u))(g(x))u=g(x)。导函数:

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f(x)。如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间【a,b】上可导,f(x)为区间【a,b】上的导函数,简称导数。条件:如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是在定义域上处处可导是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。

高中数学导数

高中数学导数8个公式是如下:

1.y=c(c为常数) y=02.y=x^n y=nx^(n-1)

3.y=a^x y=a^xlna

y=e^x y=e^x

4.y=logax y=logae/x

y=lnx y=1/x

5.y=sinx y=cosx

6.y=cosx y=-sinx

7.y=tanx y=1/cos^2x

8.y=cotx y=-1/sin^2x

数学高中函数知识点总结

知识的确是天空中伟大的太阳,它那万道光芒投下了生命,投下了力量。下面我给大家分享一些高中数学函数知识点,希望能够帮助大家,欢迎阅读! 目录 一次函数定义与定义式 一次函数的性质 一次函数的图像及性质 高中数学函数的奇偶性 高中数学函数知识点 高中数学函数知识点大全 一次函数定义与定义式 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k≠0) 一次函数的性质 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 一次函数的图像及性质 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b0时,直线只通过一、三象限;当k0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解k∈D(D为f(x)的值域); 6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min; 7.(1)(a>0,a≠1,b>0,n∈R+); (2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆; (4)alogaN=N(a>0,a≠1,N>0); 8.判断对应是否为映射时,抓住两点: (1)A中元素必须都有象且唯一; (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。 10.对于反函数,应掌握以下一些 (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数; (5)互为反函数的两个函数具有相同的单调性; (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A); 11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题; 13.恒成立问题的处理 方法 :(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解。 高中数学函数知识点 奇偶性 注图:(1)为奇函数(2)为偶函数 1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。 f(x)为奇函数《==》f(x)的图像关于原点对称 点(x,y)→(-x,-y) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。 偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。 3. 奇偶函数运算 (1) . 两个偶函数相加所得的和为偶函数. (2) . 两个奇函数相加所得的和为奇函数. (3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数. (4) . 两个偶函数相乘所得的积为偶函数. (5) . 两个奇函数相乘所得的积为偶函数. (6) . 一个偶函数与一个奇函数相乘所得的积为奇函数. 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。x叫作自变量,x的取值范围A叫作函数的定义域; 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法 (1)化归法;(2)图象法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 高中数学函数知识点大全 对数函数 对数函数的一般形式为 ,它实际上就是指数函数 的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。 指数函数 指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 如图所示为a的不同大小影响函数图形的情况。 可以看到: (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2) 指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。 (7) 函数总是通过(0,1)这点。 (8) 显然指数函数无界。 高中数学函数知识点归纳相关 文章 : ★ 高中数学函数知识归纳总结 ★ 高三数学函数知识点归纳 ★ 高一函数知识点总结归纳 ★ 高中数学函数知识点 ★ 高中数学必考知识点归纳整理 ★ 高一数学一次函数知识点总结 ★ 高一数学知识点总结归纳 ★ 高中数学知识点最新归纳 ★ 高中数学知识点大全 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高中数学知识点函数与导数知识点 高中导数知识点的问题分享结束啦,以上的文章解决了您的问题吗?欢迎您下次再来哦!