初中数学中的所有定义和概念,初二数学重点知识归纳,老铁们想知道有关这个问题的分析和解答吗,相信你通过以下的文章内容就会有更深入的了解,那么接下来就跟着我们的小编一起看看吧。

初中数学中的所有定义和概念,初二数学重点知识归纳

初中数学中的所有定义和概念,初二数学重点知识归纳

初中数学是一门基础学科,它包含了许多重要的定义和概念。在初二阶段,学生需要对这些概念进行深入的理解和应用。下面将对初中数学中的所有定义和概念,以及初二数学的重点知识进行归纳和总结。

初中数学的一些常见定义和概念包括:数的概念、运算法则、代数式、方程等。数的概念包括自然数、整数、有理数、无理数、实数和复数等。运算法则包括加法、减法、乘法和除法等运算规则。代数式是由字母和数字构成的表达式,方程是代数式中含有等号的表达式。

在初二数学中,重点知识主要包括三角函数、二次函数、线性方程组和平面几何等内容。三角函数是研究角和边的关系的函数,包括正弦函数、余弦函数和正切函数等。二次函数是由二次项和一次项构成的二次方程。线性方程组是多个线性方程的集合,其中的未知数是相同的。平面几何研究平面上的图形和空间的关系,包括直线、射影、相似等概念。

初二数学的重点还包括一些常见的应用题,如利润、利率、平均数等。利润是指销售额减去成本的差额,利率是指利润与本金的比值,平均数是一组数据的总和除以数据的个数。

在初二数学的学习中,学生需要掌握这些定义、概念和应用,理解其背后的原理和关系,并能够运用到实际问题中。通过对初中数学中的所有定义和概念的归纳以及初二数学重点知识的学习,可以帮助学生建立扎实的数学基础,为进一步学习和应用提供良好的基础。

初中数学中的定义和概念是初二数学学习的基础,而初二数学的重点知识涉及三角函数、二次函数、线性方程组和平面几何等内容。通过对这些知识的归纳总结和深入理解,可以帮助学生提高数学思维和解决问题的能力。希望同学们能够认真学习和掌握这些知识,为将来的学习和应用打下坚实的基础。

初中数学中的所有定义和概念,初二数学重点知识归纳

初中数学定义、定理、公理、公式汇编直线、线段、射线

1. 过两点有且只有一条直线.

(简:两点决定一条直线)

2.两点之间线段最短

3.同角或等角的补角相等.

同角或等角的余角相等.

4. 过一点有且只有一条直线和已知直线垂直

5. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短)

平行线的判断

1.平行公理 经过直线外一点,有且只有一条直线与这条直线平行.

2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行)

3.同位角相等,两直线平行.

4.内错角相等,两直线平行.

5.同旁内角互补,两直线平行.

平行线的性质

1.两直线平行,同位角相等.

2.两直线平行,内错角相等.

3.两直线平行,同旁内角互补.

三角形三边的关系

1.三角形两边的和大于第三边、三角形两边的差小于第三边.

三角形角的关系

1. 三角形内角和定理 三角形三个内角的和等于180°.

2.直角三角形的两个锐角互余.

3.三角形的一个外角等于和它不相邻的两个内角的和.

4. 三角形的一个外角大于任何一个和它不相邻的内角.

全等三角形的性质、判定

1.全等三角形的对应边、对应角相等.

2.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等.

3.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等.

4.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等.

5. 边边边公理(SSS)有三边对应相等的两个三角形全等.

6.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等.

角的平分线的性质、判定

性质:在角的平分线上的点到这个角的两边的距离相等.

判定:到一个角的两边的距离相同的点,在这个角的平分线上.

等腰三角形的性质

1.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角).

2.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边.

3.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.

4.推论3 等边三角形的各角都相等,并且每一个角都等于60° .

等腰三角形判定

1等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

2.三个角都相等的三角形是等边三角形.

3.有一个角等于60°的等腰三角形是等边三角形.

线段垂直平分线的性质、判定

1. 定理: 线段垂直平分线上的点和这条线段两个端点的距离相等 .

2.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

3.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合.轴对称、中心对称、 平移、旋转

1. 关于某条直线对称的两个图形是全等形

2.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

3.两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

4.若两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.

5.关于中心对称的两个图形是全等的.

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.

6. 若两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称.

7.平移或旋转前后的图形是不变的.中心对称是旋转的特殊形式。

勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2.

勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角①直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半.

②直角三角形斜边上的中线等于斜边上的一半.

n边形、四边形的内角和、外角和

1.四边形的内角和等于360°.

2.四边形的外角和等于360°

3.多边形内角和定理 n边形的内角的和等于(n-2)180°.

4.推论 任意多边的外角和等于360°.

平行四边形性质

1.平行四边形的对角相等.

2.平行四边形的对边相等.

3.夹在两条平行线间的平行线段相等.

4.平行四边形的对角线互相平分.

平行四边形判定

1.两组对边分别平行的四边形是平行四边形.

2.两组对角分别相等的四边形是平行四边形. 3.两组对边分别相等的四边形是平行四边形.

4.对角线互相平分的四边形是平行四边形.

5. 一组对边平行相等的四边形是平行四边形

矩形性质

1. 矩形的四个角都是直角.

2. 矩形的对角线相等.

矩形判定

1.有一个角是直角的平行四边形是矩形.

2.有三个角是直角的四边形是矩形.

3. 对角线相等的平行四边形是矩形.

菱形性质

1、菱形的四条边都相等.

2. 菱形的对角线互相垂直,并且每一条对角线平分一组对角.

3、菱形面积=对角线乘积的一半,即

菱形判定

1.有一组邻边相等的平行四边形是菱形

2.四边都相等的四边形是菱形

3.对角线互相垂直的平行四边形是菱形.

正方形性质

1.正方形的四个角都是直角,四条边都相等.

2.正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.

正方形判定

1.四个角都是直角,四条边都相等的四边形是正方形

2.对角线互相垂直平分且相等的四边形是正方形.

等腰梯形性质

1.等腰梯形在同一底上的两个角相等.

2.等腰梯形的两条对角线相等.

等腰梯形判定

1.同一底上的两个角相等的梯形是等腰梯形

2.对角线相等的梯形是等腰梯形.

①经过梯形一腰的中点与底平行的直线,必平分另一腰.

②经过三角形一边的中点与另一边平行的直线,必平分第三边.

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.

梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半 ,S=Lh

比例的基本性质 如果a:b=c:d ad=bc

相似三角形判定

1.定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.

2.两角对应相等,两三角形相似.

3.两边对应成比例且夹角相等,两三角形相似

4.三边对应成比例,两三角形相似

5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.

相似三角形性质

1. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

2.相似三角形周长的比等于相似比.

3.相似三角形面积的比等于相似比的平方.

4.位似图形是相似图形的特殊形式。位似比等于相似比。

1.圆是到定点的距离等于定长的点的集合.

2.圆的内部可以看作是到圆心的距离小于半径.的点的集合.

3.圆的外部可以看作是到圆心的距离大于半径的点的集合.

4.同圆或等圆的半径相等.

5.不在同一直线上的三点确定一个圆。

垂径定理

1.垂直于弦的直径平分这条弦并且平分弦所对的两条弧 .

推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.

3.圆是以圆心为对称中心的中心对称图形 .

4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.

5.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等.

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.

①同弧或等弧所对的圆周角相等;同圆或等圆

中,相等的圆周角所对的弧也相等.

②半圆(或直径)所对的圆周角是直角;90°

的圆周角所对的弦是直径.

③如果三角形一边上的中线等于这边的一半,

那么这个三角形是直角三角形 .

三角形的外心,三角形外接圆的圆心,它是三边的中垂线的交点,到三个顶点的距离相等.

三角形的内心,三角形内切圆的圆心,它是三个内角的平分线的交点,到三边的距离相等.

直角三角形三边为a、b、c,c为斜边,则外接圆的半径;内切圆的半径

直线和圆的位置关系

①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

切线的判定:经过半径的外端且垂直于这切线

切线的性质:圆的切线垂直于经过切点的半径①经过圆心且垂直于切线的直线必经过切点 .

②经过切点且垂直于切线的直线必经过圆心.

切线长定理.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

圆和圆的位置关系

如果两个圆相切,那么切点一定在连心线上

①两圆外离 d>R+r

②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r)

⑤两圆内含d<R-r(R>r)

正多边形和圆

①依次连结各等分点所得的多边形是这个圆的内接正n边形 n(n≥3):

②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 .定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

正n边形的每个内角都等于

定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.

正三角形面积, a表示边长.

扇形弧长:

扇形面积:

圆拄的侧面积

圆拄的表面积

圆锥的侧面积

圆锥的表面积

幂的运算:

①a≠0时a0=1,a-p=

②aman= am+n;(am)n= am n

③0的0次幂没有意义

平方差:a2-b2=(a+b)(a-b)

完全平方:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2

推广:a2+b2=(a+b)2-2ab (a-b)2=(a+b)2-4ab

一次函数y=kx+b(k≠0)

k>0,y随x的增大而增大

k0,y随x的增大而增大,直线y=kx经过(0,0),(1,k), 经过第一、三象限

②k0,双曲线在第一、三象限,在每个象限内,随x的增大而减少.

②k0 方程有两个不等的实根.

b2-4ac0 抛物线与x轴有两个交点

b2-4ac<0 抛物线与x轴有没有公共点.

①抛物线的一般式: y=ax2+bx+c。(a≠0)

②抛物线的顶点式 :y=a(x-h)2+k。

顶点(h,k),对称轴为直线

最大(小)值 为(左同右异 )

③抛物线的两根式: y=a(x-x1)(x-x2)

常见的勾股数(整数)3,4,5; 6,8,10; 5,12,13; 8,15,17,9,40,41等。

常见的无理数;, ,等等

≈1.414 ≈1.732 ≈2.236

锐角三角函数0°30°45°60°90°sin01cos10tan01/有效数字:从左边第一个不是0的数起,到最后一个数止。如0.03120有效数字为3、1、2、0共4个有效数字。

中位数:把一列数从大到小(或从小到大)排列,若有奇数个数,中间一个为中位数,若有偶数个数,中间两个的平均数为中位数.

(2)方差公式:.

五个连续整数的方差是2,标准差为.

(望同学们在理解的基础上记忆,重在运用)祝你中考成功!

初中数学所有定理汇总

几何是初中数学中重要的一部分内容,学习几何,需要证明,这时定理就很重要了。下面我整理了初中数学重要定理,赶快收藏起来吧! 1、点、线、角 点的定理:过两点有且只有一条直线。 点的定理:两点之间线段最短。 角的定理:同角或等角的补角相等。 角的定理:同角或等角的余角相等。 直线定理:过一点有且只有一条直线和已知直线垂直。 直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短。 2、三角形内角定理 定理:三角形两边的和大于第三边。 推论:三角形两边的差小于第三边。 三角形内角和定理:三角形三个内角的和等于180°。 3、几何平行 平行定理:经过直线外一点,有且只有一条直线与这条直线平行。 推论:如果两条直线都和第三条直线平行,这两条直线也互相平行。 证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。 两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。 4、全等三角形判定 定理:全等三角形的对应边、对应角相等。 边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等。 角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等。 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。 边边边定理(SSS):有三边对应相等的两个三角形全等。 斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。 5、等腰三角形性质 等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。 6、角的平分线 定理1:在角的平分线上的点到这个角的两边的距离相等。 定理2:到一个角的两边的距离相同的点,在这个角的平分线上。 角的平分线是到角的两边距离相等的所有点的集合。 7、多边形内角和定理 定理:四边形的内角和等于360°;四边形的外角和等于360°。 多边形内角和定理:n边形的内角和等于(n-2)×180°。 推论:任意多边的外角和等于360°。 8、对称定理 定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。 定理1:关于某条直线对称的两个图形是全等形。 定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。 定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。 逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。 9、直角三角形定理 定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。 判定定理:直角三角形斜边上的中线等于斜边上的一半。 勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2。 勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形。 10、平行四边形定理 平行四边形性质定理: 1.平行四边形的对角相等。 2.平行四边形的对边相等。 3.平行四边形的对角线互相平分。 推论:夹在两条平行线间的平行线段相等。 平行四边形判定定理: 1.两组对角分别相等的四边形是平行四边形。 2.两组对边分别相等的四边形是平行四边形。 3.对角线互相平分的四边形是平行四边形。 4.一组对边平行相等的四边形是平行四边形。 11、正方形定理 正方形性质定理1:正方形的四个角都是直角,四条边都相等。 正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。 12、矩形定理 矩形性质定理1:矩形的四个角都是直角。 矩形性质定理2:矩形的对角线相等。 矩形判定定理1:有三个角是直角的四边形是矩形。 矩形判定定理2:对角线相等的平行四边形是矩形。 13、菱形定理 菱形性质定理1:菱形的四条边都相等。 菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。 菱形面积=对角线乘积的一半,即S=(a×b)÷2。 菱形判定定理1:四边都相等的四边形是菱形。 菱形判定定理2:对角线互相垂直的平行四边形是菱形。 14、中心对称定理 定理1:关于中心对称的两个图形是全等的。 定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 。 15、等腰梯形性质定理 等腰梯形性质定理: 1.等腰梯形在同一底上的两个角相等。 2.等腰梯形的两条对角线相等。 等腰梯形判定定理: 1.在同一底上的两个角相等的梯形是等腰梯形。 2.对角线相等的梯形是等腰梯形。 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。 推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。 16、中位线定理 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h。 17、相似三角形定理 相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 相似三角形判定定理: 1.两角对应相等,两三角形相似(ASA)。 2.两边对应成比例且夹角相等,两三角形相似(SAS)。 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。 判定定理3:三边对应成比例,两三角形相似(SSS)。 相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 性质定理: 1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。 2.相似三角形周长的比等于相似比。 3.相似三角形面积的比等于相似比的平方。 18、三角函数定理 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。 19、圆的定理 定理:过不共线的三个点,可以作且只可以作一个圆。 定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧。 推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧。 推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧。 推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧。 定理: 1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等。 2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线。 3.圆的切线垂直经过切点的半径。 4.三角形的三个内角平分线交于一点,这点是三角形的内心。 5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 6.圆的外切四边形的两组对边的和相等。 7.如果四边形两组对边的和相等,那么它必有内切圆。 8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等。 20、比例性质定理 比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d。 合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d。 等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。

初中数学名词概念解释

1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行11 同旁内角互补,两直线平行 12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360°49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角

2 初中数学公式

61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

3 初中数学公式(申精)

离相等的一条直线 109定理 不在同一直线上的三点确定一个圆。110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理 一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136定理 相交两圆的连心线垂直平分两圆的公共弦137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

数轴的定义和要素

数轴的定义:规定了原点、正方向和单位长度的直线叫数轴。

原点、方向和单位长度称为数轴的三要素。

1、原点:

在数学上,数轴上原点为0点,坐标系统的原点是指坐标轴的交点。它和正方向、单位长度并称为数轴的三要素,三者缺一不可。在二维直角坐标系中,原点的坐标为 (0,0)。而在三维直角坐标系中,原点的坐标为 (0,0,0)。

原点在数轴、二维和三维坐标系中起到参考基准的作用,依据此点可以计算出其他点的坐标等。

2、正方向

正方向是人们规定的一个方向,与正方向相反的是负方向。在数轴中,它是三要素之一;在坐标系中,它也是不可或缺的一部分。引入“正方向”的概念的目的是更好地分析和表示问题。

3、单位长度

一个单位的长度。单位1是人们设定的一个参考标准,单位长度就是可供参考的标准,它没有固定值,依设定而变动,不是实际的长度计量单位。

从原点到数1的距离并非是某一特定的长度计量标准。

直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个。正因为它们的这个共性,所以用直线上无数个点来表示实数。

这时就用一条规定了原点、正方向和单位长度的直线来表示实数。规定右边为正方向时,在这条直线上的两个数,右边上点表示的数总大于左边上点表示的数,正数大于零,零大于负数。扩展资料

1、数轴特点

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

2、数轴上点与有理数关系

每一个有理数都可以用数轴上的一个点来表示;但数轴上的点不都表示有理数。

3、注意:不能出现相同长度表示的不等的量。数轴两端不能画点。

参考资料来源:百度百科-数轴

初二数学重点知识归纳

很多同学在复习初二数学时,因为之前没有做过系统的导致复习知识点分散,复习效率低下。下面是由我为大家整理的“初二数学知识点总结归纳大全”,仅供参考,欢迎大家阅读本文。 初二数学知识点总结归纳大全 第一章 勾股定理 定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。 判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。 定义:满足a +b =c 的三个正整数,称为勾股数。 第二章 实数 定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数 (有理数总可以用有限小数或无限循环小数表示) 一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。 特别地,我们规定0的算术平方根是0。 一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。 求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。 一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。 正数的立方根是正数;0的立方根是0;负数的立方根是负数。 求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。 有理数和无理数统称为实数,即实数可以分为有理数和无理数。 每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。 在数轴上,右边的点表示的数比左边的点表示的数大。 第三章 图形的平移与旋转 定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。 经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。 任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。 第四章 四边形性质探索 定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。 平行四边形: 两组对边分别平行的四边形.。 对边相等,对角相等,对角线互相平分。 两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形 菱形 :一组邻边相等的平行四边形 (平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。 矩形: 有一个内角是直角的平行四边形 (平行四边形的性质)。对角线相等,四个角都是直角。 有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。 正方形: 一组邻边相等的矩形。 正方形具有平行四边形、菱形、矩形的一切性质。 一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。 梯形: 一组对边平行而另一组对边不平行的四边形。 一组对边平行而另一组对边不平行的四边形是梯形 。 等腰梯形 :两条腰相等的梯形。 同一底上的两个内角相等,对角线相等。 两腰相等的梯形是等腰梯形, 同一底上两个内角相等的梯形是等腰梯形 。 直角梯形 :一条腰和底垂直的梯形。 一条腰和底垂直的梯形是直角梯形。 多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于(n-2)×180 多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。 多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。 定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。 中心对称图形上的每一对对应点所连成的线段都被对称中心平分。 第五章 位置的确定 位置表示方法:方位角加距离;坐标;经纬度 定义:在平面内,两条互相垂直且有公共原点的书轴组成平面直角坐标系。 通常,两条数轴分别至于水平位置与铅直位置,取向右与向上方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y统称坐标轴,它们的公共原点O称为直角坐标系的原点。 图形随坐标变化:向上/下/左/右平移X个单位长度、横向/纵向拉长X倍、横向/纵向压缩X倍、放大/缩小了X倍、关于x/y轴成轴对称、关于原点O成中心对称 第六章 一次函数 定义:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中是x自变量,y是因变量。 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。 把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象。 正比例函数y=kx的图象是经过原点(0,0)的一条直线。 在一次函数y=kx+b中, 当k>0时,的值随值的增大而增大; 当k<0时,的值随值的增大而减小。 第七章 二元一次方程组 定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。 解二元一次方程组的基本思路是“消元”——把“二元”变为“一元”。 以一个未知数代另一个未知数的解法称为代入消元法,简称代入法。 通过两式加减消去其中一个未知数的解法称做加减消元法,简称加减法。 第八章 数据的代表 定义:一般地,对于n个数X1,X2,Xn,我们把1/n(X1+X2++Xn)叫做这个数的算术平均数,简称平均数,记为X。 为A的三项测试成绩的加权平均数。 一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。 拓展阅读:初中数学提升方法 1、课前预习,认真听讲 为什么要预习,你要知道这一讲哪些内容你一开始看不懂,那上课的时候对于这个问题就要认真听,这样听讲更有针对性,比坐在教室里纯被动的听讲效率高太多,自然,最终的效果也要好太多。 2、课后刷题,总结归纳 提高数学成绩必须要刷题,在刷题量没有达到一定程度之前,是没有谈方法和技巧的必要的。怎么刷题?其实每天的家庭作业就是刷题,一定要认真完成,如果还有多的时间,那么可以刷往年的真题试卷,注意!一定是刷真题,刷真题不是说整套整套刷,你就刷平时经常扣分的那几题。等你把刷过的题都归纳清楚,你的水平肯定会得到大幅度提升。 3、不懂就问,消除盲区 不少同学会发现一个问题,就是听讲也听懂了,做题也不少,但是遇到新题还是不会。遇到新题不会的根本原因还是因为对原有知识点的理解不够深入,不能举一反三,那怎么办,遇到不懂的问题要第一时间解决,可以问老师、问同学、问搜题软件等等,核心宗旨就是不能留下知识盲区,一点疑惑都不能留,并且要第一时间解决,不能拖,一拖就忘了。

文章到此结束,如果本次分享的初中数学中的所有定义和概念,初二数学重点知识归纳的问题解决了您的问题,那么我们由衷的感到高兴!